| User | Beamish |
| Upload Date | November 04 2025 10:51 AM |
| Views | 5 |
| AI Information | |
|---|---|
| Framework | TensorFlow Lite |
| Backend | NNAPI |
| Device | Qualcomm Snapdragon 8 Gen 3 |
| System Information | |
|---|---|
| Operating System | Android 15 |
| Model | Samsung Galaxy Z Flip6 |
| Model ID | samsung SM-F741B |
| Motherboard | pineapple |
| Governor | walt |
| CPU Information | |
|---|---|
| Name | ARM ARMv8 |
| Topology | 1 Processor, 8 Cores |
| Identifier | ARM implementer 65 architecture 8 variant 0 part 3458 revision 1 |
| Base Frequency | 2.26 GHz |
| Cluster 1 | 2 Cores @ 2.27 GHz |
| Cluster 2 | 2 Cores @ 2.96 GHz |
| Cluster 3 | 3 Cores @ 3.15 GHz |
| Cluster 4 | 1 Core @ 3.40 GHz |
| Memory Information | |
|---|---|
| Size | 10.86 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
239
44.4 IPS |
|
|
Image Classification (HP)
|
100% |
240
44.7 IPS |
|
|
Image Classification (Q)
|
99% |
603
112.6 IPS |
|
|
Image Segmentation (SP)
|
100% |
303
4.91 IPS |
|
|
Image Segmentation (HP)
|
100% |
307
4.97 IPS |
|
|
Image Segmentation (Q)
|
98% |
611
9.93 IPS |
|
|
Pose Estimation (SP)
|
100% |
433
0.51 IPS |
|
|
Pose Estimation (HP)
|
100% |
429
0.50 IPS |
|
|
Pose Estimation (Q)
|
98% |
1625
1.90 IPS |
|
|
Object Detection (SP)
|
100% |
237
18.8 IPS |
|
|
Object Detection (HP)
|
100% |
237
18.8 IPS |
|
|
Object Detection (Q)
|
87% |
650
52.2 IPS |
|
|
Face Detection (SP)
|
100% |
592
7.03 IPS |
|
|
Face Detection (HP)
|
100% |
588
6.99 IPS |
|
|
Face Detection (Q)
|
97% |
1276
15.2 IPS |
|
|
Depth Estimation (SP)
|
100% |
527
4.06 IPS |
|
|
Depth Estimation (HP)
|
99% |
527
4.06 IPS |
|
|
Depth Estimation (Q)
|
64% |
1234
11.2 IPS |
|
|
Style Transfer (SP)
|
100% |
845
1.09 IPS |
|
|
Style Transfer (HP)
|
100% |
846
1.09 IPS |
|
|
Style Transfer (Q)
|
98% |
2043
2.63 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
283
10.4 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
280
10.3 IPS |
|
|
Image Super-Resolution (Q)
|
97% |
939
34.8 IPS |
|
|
Text Classification (SP)
|
100% |
347
462.6 IPS |
|
|
Text Classification (HP)
|
100% |
349
466.1 IPS |
|
|
Text Classification (Q)
|
91% |
560
752.5 IPS |
|
|
Machine Translation (SP)
|
100% |
565
9.74 IPS |
|
|
Machine Translation (HP)
|
100% |
560
9.65 IPS |
|
|
Machine Translation (Q)
|
57% |
464
11.3 IPS |