| User | fbl |
| Upload Date | August 26 2024 10:43 AM |
| Views | 11 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 2060 |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 10 Pro (64-bit) |
| Model | Micro-Star International Co., Ltd. MS-7C39 |
| Motherboard | Micro-Star International Co., Ltd. B365M PRO-VDH(MS-7C39) |
| Power Plan | High performance |
| CPU Information | |
|---|---|
| Name | Intel Core i5-9400F |
| Topology | 1 Processor, 6 Cores |
| Identifier | GenuineIntel Family 6 Model 158 Stepping 10 |
| Base Frequency | 2.90 GHz |
| Cluster 1 | 6 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
4560
848.0 IPS |
|
|
Image Classification (HP)
|
100% |
7321
1.36 KIPS |
|
|
Image Classification (Q)
|
100% |
3472
645.8 IPS |
|
|
Image Segmentation (SP)
|
100% |
6431
104.3 IPS |
|
|
Image Segmentation (HP)
|
100% |
7592
123.1 IPS |
|
|
Image Segmentation (Q)
|
98% |
5386
87.6 IPS |
|
|
Pose Estimation (SP)
|
100% |
59032
68.9 IPS |
|
|
Pose Estimation (HP)
|
100% |
191271
223.2 IPS |
|
|
Pose Estimation (Q)
|
97% |
49016
57.4 IPS |
|
|
Object Detection (SP)
|
100% |
5791
459.3 IPS |
|
|
Object Detection (HP)
|
100% |
9192
729.1 IPS |
|
|
Object Detection (Q)
|
89% |
4432
354.7 IPS |
|
|
Face Detection (SP)
|
100% |
12226
145.3 IPS |
|
|
Face Detection (HP)
|
100% |
18733
222.6 IPS |
|
|
Face Detection (Q)
|
97% |
9459
112.8 IPS |
|
|
Depth Estimation (SP)
|
100% |
27606
212.7 IPS |
|
|
Depth Estimation (HP)
|
99% |
51252
394.9 IPS |
|
|
Depth Estimation (Q)
|
74% |
19111
155.4 IPS |
|
|
Style Transfer (SP)
|
100% |
107403
138.1 IPS |
|
|
Style Transfer (HP)
|
100% |
242861
312.2 IPS |
|
|
Style Transfer (Q)
|
98% |
85438
110.2 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
17401
642.5 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
26591
981.9 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
10777
399.1 IPS |
|
|
Text Classification (SP)
|
100% |
1357
1.81 KIPS |
|
|
Text Classification (HP)
|
99% |
2296
3.06 KIPS |
|
|
Text Classification (Q)
|
97% |
825
1.10 KIPS |
|
|
Machine Translation (SP)
|
100% |
2502
43.1 IPS |
|
|
Machine Translation (HP)
|
100% |
2505
43.2 IPS |
|
|
Machine Translation (Q)
|
60% |
1032
23.0 IPS |