| Upload Date | October 29 2025 03:22 PM | 
| Views | 2 | 
| AI Information | |
|---|---|
| Framework | OpenVINO | 
| Backend | NPU | 
| Device | Intel(R) AI Boost | 
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) | 
| Model | Micro-Star International Co., Ltd. PRO LNL Cubi NUC AI+ 2M (MS-B206) | 
| Motherboard | Micro-Star International Co., Ltd. MS-B2061 | 
| Power Plan | Balanced | 
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 7 258V | 
| Topology | 1 Processor, 8 Cores | 
| Identifier | GenuineIntel Family 6 Model 189 Stepping 1 | 
| Base Frequency | 2.20 GHz | 
| Cluster 1 | 4 Cores | 
| Cluster 2 | 4 Cores | 
| Memory Information | |
|---|---|
| Size | 32.00 GB | 
| Workload | Accuracy | Score | |
|---|---|---|---|
| Image Classification (SP) | 100% | 1714 318.7 IPS | |
| Image Classification (HP) | 100% | 13139 2.44 KIPS | |
| Image Classification (Q) | 100% | 20521 3.82 KIPS | |
| Image Segmentation (SP) | 100% | 1755 28.4 IPS | |
| Image Segmentation (HP) | 100% | 15000 243.2 IPS | |
| Image Segmentation (Q) | 99% | 30069 487.4 IPS | |
| Pose Estimation (SP) | 100% | 3127 3.65 IPS | |
| Pose Estimation (HP) | 100% | 81230 94.8 IPS | |
| Pose Estimation (Q) | 96% | 230766 270.3 IPS | |
| Object Detection (SP) | 100% | 1673 132.7 IPS | |
| Object Detection (HP) | 100% | 15892 1.26 KIPS | |
| Object Detection (Q) | 88% | 26599 2.13 KIPS | |
| Face Detection (SP) | 100% | 2545 30.2 IPS | |
| Face Detection (HP) | 100% | 36436 432.9 IPS | |
| Face Detection (Q) | 100% | 86631 1.03 KIPS | |
| Depth Estimation (SP) | 100% | 4172 32.1 IPS | |
| Depth Estimation (HP) | 92% | 65716 509.8 IPS | |
| Depth Estimation (Q) | 88% | 146461 1.14 KIPS | |
| Style Transfer (SP) | 100% | 7914 10.2 IPS | |
| Style Transfer (HP) | 100% | 162542 209.0 IPS | |
| Style Transfer (Q) | 98% | 370581 477.9 IPS | |
| Image Super-Resolution (SP) | 100% | 1643 60.7 IPS | |
| Image Super-Resolution (HP) | 100% | 30032 1.11 KIPS | |
| Image Super-Resolution (Q) | 99% | 65053 2.41 KIPS | |
| Text Classification (SP) | 100% | 1994 2.66 KIPS | |
| Text Classification (HP) | 100% | 3074 4.10 KIPS | |
| Text Classification (Q) | 92% | 3708 4.98 KIPS | |
| Machine Translation (SP) | 100% | 2187 37.7 IPS | |
| Machine Translation (HP) | 100% | 5931 102.2 IPS | |
| Machine Translation (Q) | 100% | 7159 123.3 IPS |