| Upload Date | October 29 2025 03:19 PM |
| Views | 4 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | CPU |
| Device | Intel(R) Core(TM) Ultra 7 258V |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | Micro-Star International Co., Ltd. PRO LNL Cubi NUC AI+ 2M (MS-B206) |
| Motherboard | Micro-Star International Co., Ltd. MS-B2061 |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 7 258V |
| Topology | 1 Processor, 8 Cores |
| Identifier | GenuineIntel Family 6 Model 189 Stepping 1 |
| Base Frequency | 2.20 GHz |
| Cluster 1 | 4 Cores |
| Cluster 2 | 4 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
1743
324.2 IPS |
|
|
Image Classification (HP)
|
100% |
1222
227.3 IPS |
|
|
Image Classification (Q)
|
100% |
4856
903.0 IPS |
|
|
Image Segmentation (SP)
|
100% |
1565
25.4 IPS |
|
|
Image Segmentation (HP)
|
100% |
819
13.3 IPS |
|
|
Image Segmentation (Q)
|
99% |
3784
61.3 IPS |
|
|
Pose Estimation (SP)
|
100% |
2748
3.21 IPS |
|
|
Pose Estimation (HP)
|
100% |
2066
2.41 IPS |
|
|
Pose Estimation (Q)
|
96% |
11808
13.8 IPS |
|
|
Object Detection (SP)
|
100% |
1676
133.0 IPS |
|
|
Object Detection (HP)
|
100% |
948
75.2 IPS |
|
|
Object Detection (Q)
|
88% |
3829
306.9 IPS |
|
|
Face Detection (SP)
|
100% |
2679
31.8 IPS |
|
|
Face Detection (HP)
|
100% |
3005
35.7 IPS |
|
|
Face Detection (Q)
|
100% |
11803
140.2 IPS |
|
|
Depth Estimation (SP)
|
100% |
4353
33.5 IPS |
|
|
Depth Estimation (HP)
|
99% |
2943
22.7 IPS |
|
|
Depth Estimation (Q)
|
89% |
9848
76.6 IPS |
|
|
Style Transfer (SP)
|
100% |
6932
8.91 IPS |
|
|
Style Transfer (HP)
|
100% |
5937
7.63 IPS |
|
|
Style Transfer (Q)
|
98% |
33579
43.3 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
1891
69.8 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
1310
48.4 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
6922
256.3 IPS |
|
|
Text Classification (SP)
|
100% |
2014
2.69 KIPS |
|
|
Text Classification (HP)
|
100% |
1302
1.74 KIPS |
|
|
Text Classification (Q)
|
92% |
4089
5.49 KIPS |
|
|
Machine Translation (SP)
|
100% |
2607
44.9 IPS |
|
|
Machine Translation (HP)
|
100% |
2537
43.7 IPS |
|
|
Machine Translation (Q)
|
100% |
2985
51.4 IPS |