| Upload Date | October 29 2025 02:03 PM |
| Views | 2 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 5060 Ti |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | Micro-Star International Co., Ltd. MS-7E02 |
| Motherboard | Micro-Star International Co., Ltd. PRO B760M-P (MS-7E02) |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel Core i5-14600K |
| Topology | 1 Processor, 14 Cores, 20 Threads |
| Identifier | GenuineIntel Family 6 Model 183 Stepping 1 |
| Base Frequency | 3.50 GHz |
| Cluster 1 | 6 Cores |
| Cluster 2 | 8 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
9011
1.68 KIPS |
|
|
Image Classification (HP)
|
100% |
15817
2.94 KIPS |
|
|
Image Classification (Q)
|
100% |
8170
1.52 KIPS |
|
|
Image Segmentation (SP)
|
100% |
12868
208.6 IPS |
|
|
Image Segmentation (HP)
|
100% |
17165
278.3 IPS |
|
|
Image Segmentation (Q)
|
98% |
11976
194.7 IPS |
|
|
Pose Estimation (SP)
|
100% |
114704
133.8 IPS |
|
|
Pose Estimation (HP)
|
100% |
355513
414.8 IPS |
|
|
Pose Estimation (Q)
|
96% |
104342
122.2 IPS |
|
|
Object Detection (SP)
|
100% |
10694
848.3 IPS |
|
|
Object Detection (HP)
|
100% |
17927
1.42 KIPS |
|
|
Object Detection (Q)
|
83% |
9167
740.6 IPS |
|
|
Face Detection (SP)
|
100% |
25610
304.3 IPS |
|
|
Face Detection (HP)
|
100% |
38011
451.7 IPS |
|
|
Face Detection (Q)
|
97% |
22034
262.7 IPS |
|
|
Depth Estimation (SP)
|
100% |
50662
390.3 IPS |
|
|
Depth Estimation (HP)
|
99% |
105289
811.2 IPS |
|
|
Depth Estimation (Q)
|
78% |
38753
309.3 IPS |
|
|
Style Transfer (SP)
|
100% |
160377
206.2 IPS |
|
|
Style Transfer (HP)
|
100% |
539679
693.8 IPS |
|
|
Style Transfer (Q)
|
98% |
139730
180.2 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
32398
1.20 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
62004
2.29 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
23603
874.0 IPS |
|
|
Text Classification (SP)
|
100% |
3886
5.19 KIPS |
|
|
Text Classification (HP)
|
100% |
4874
6.51 KIPS |
|
|
Text Classification (Q)
|
97% |
2320
3.11 KIPS |
|
|
Machine Translation (SP)
|
100% |
3813
65.7 IPS |
|
|
Machine Translation (HP)
|
100% |
4153
71.5 IPS |
|
|
Machine Translation (Q)
|
70% |
1691
31.7 IPS |