| Upload Date | October 23 2025 01:17 PM |
| Views | 2 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 5090 |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Home (64-bit) |
| Model | Micro-Star International Co., Ltd. MEG Z890 Vision X AI 2nd (MS-B921) |
| Motherboard | Micro-Star International Co., Ltd. MS-B9211 |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 9 285K |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 3.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 64.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
15679
2.92 KIPS |
|
|
Image Classification (HP)
|
100% |
20597
3.83 KIPS |
|
|
Image Classification (Q)
|
100% |
13357
2.48 KIPS |
|
|
Image Segmentation (SP)
|
100% |
32649
529.3 IPS |
|
|
Image Segmentation (HP)
|
100% |
40753
660.6 IPS |
|
|
Image Segmentation (Q)
|
98% |
30535
496.5 IPS |
|
|
Pose Estimation (SP)
|
100% |
383495
447.5 IPS |
|
|
Pose Estimation (HP)
|
100% |
930674
1.09 KIPS |
|
|
Pose Estimation (Q)
|
96% |
315284
369.3 IPS |
|
|
Object Detection (SP)
|
100% |
20598
1.63 KIPS |
|
|
Object Detection (HP)
|
100% |
25855
2.05 KIPS |
|
|
Object Detection (Q)
|
85% |
17106
1.38 KIPS |
|
|
Face Detection (SP)
|
100% |
64334
764.4 IPS |
|
|
Face Detection (HP)
|
100% |
83601
993.4 IPS |
|
|
Face Detection (Q)
|
97% |
51741
617.0 IPS |
|
|
Depth Estimation (SP)
|
100% |
100601
775.1 IPS |
|
|
Depth Estimation (HP)
|
99% |
175509
1.35 KIPS |
|
|
Depth Estimation (Q)
|
77% |
73784
591.0 IPS |
|
|
Style Transfer (SP)
|
100% |
564816
726.1 IPS |
|
|
Style Transfer (HP)
|
100% |
1529490
1.97 KIPS |
|
|
Style Transfer (Q)
|
98% |
471676
608.2 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
62210
2.30 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
76500
2.82 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
47281
1.75 KIPS |
|
|
Text Classification (SP)
|
100% |
3827
5.11 KIPS |
|
|
Text Classification (HP)
|
100% |
4425
5.91 KIPS |
|
|
Text Classification (Q)
|
97% |
2261
3.03 KIPS |
|
|
Machine Translation (SP)
|
100% |
6149
105.9 IPS |
|
|
Machine Translation (HP)
|
100% |
6048
104.2 IPS |
|
|
Machine Translation (Q)
|
70% |
2877
54.0 IPS |