| User | NSanjula |
| Upload Date | October 06 2025 05:11 PM |
| Views | 8 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | NPU |
| Device | Intel(R) AI Boost |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | HP HP ProBook 460 16 inch G11 Notebook PC |
| Motherboard | HP 8C84 |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 7 155U |
| Topology | 1 Processor, 12 Cores, 14 Threads |
| Identifier | GenuineIntel Family 6 Model 170 Stepping 4 |
| Base Frequency | 1.70 GHz |
| Cluster 1 | 2 Cores |
| Cluster 2 | 10 Cores |
| Memory Information | |
|---|---|
| Size | 16.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
1369
254.6 IPS |
|
|
Image Classification (HP)
|
100% |
5738
1.07 KIPS |
|
|
Image Classification (Q)
|
100% |
7729
1.44 KIPS |
|
|
Image Segmentation (SP)
|
100% |
1968
31.9 IPS |
|
|
Image Segmentation (HP)
|
100% |
2431
39.4 IPS |
|
|
Image Segmentation (Q)
|
99% |
3341
54.2 IPS |
|
|
Pose Estimation (SP)
|
100% |
3247
3.79 IPS |
|
|
Pose Estimation (HP)
|
100% |
29521
34.4 IPS |
|
|
Pose Estimation (Q)
|
96% |
62439
73.1 IPS |
|
|
Object Detection (SP)
|
100% |
845
67.0 IPS |
|
|
Object Detection (HP)
|
100% |
5130
406.9 IPS |
|
|
Object Detection (Q)
|
87% |
8403
674.4 IPS |
|
|
Face Detection (SP)
|
100% |
3520
41.8 IPS |
|
|
Face Detection (HP)
|
100% |
12753
151.5 IPS |
|
|
Face Detection (Q)
|
100% |
21350
253.7 IPS |
|
|
Depth Estimation (SP)
|
100% |
3510
27.0 IPS |
|
|
Depth Estimation (HP)
|
99% |
15573
120.0 IPS |
|
|
Depth Estimation (Q)
|
88% |
26868
209.1 IPS |
|
|
Style Transfer (SP)
|
100% |
7389
9.50 IPS |
|
|
Style Transfer (HP)
|
100% |
43186
55.5 IPS |
|
|
Style Transfer (Q)
|
98% |
77948
100.5 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
1125
41.6 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
12088
446.3 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
19944
738.6 IPS |
|
|
Text Classification (SP)
|
100% |
1578
2.11 KIPS |
|
|
Text Classification (HP)
|
100% |
1592
2.12 KIPS |
|
|
Text Classification (Q)
|
92% |
1595
2.14 KIPS |
|
|
Machine Translation (SP)
|
100% |
2067
35.6 IPS |
|
|
Machine Translation (HP)
|
100% |
3279
56.5 IPS |
|
|
Machine Translation (Q)
|
100% |
3440
59.3 IPS |