| User | Odai |
| Upload Date | August 23 2024 01:50 PM |
| Views | 23 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 4070 |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | Micro-Star International Co., Ltd. MS-7E28 |
| Motherboard | Micro-Star International Co., Ltd. PRO B650M-B (MS-7E28) |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | AMD Ryzen 7 7700 |
| Topology | 1 Processor, 8 Cores, 16 Threads |
| Identifier | AuthenticAMD Family 25 Model 97 Stepping 2 |
| Base Frequency | 3.80 GHz |
| Cluster 1 | 8 Cores |
| Memory Information | |
|---|---|
| Size | 16.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
9832
1.83 KIPS |
|
|
Image Classification (HP)
|
99% |
14845
2.77 KIPS |
|
|
Image Classification (Q)
|
100% |
8589
1.60 KIPS |
|
|
Image Segmentation (SP)
|
100% |
17502
283.7 IPS |
|
|
Image Segmentation (HP)
|
100% |
23028
373.3 IPS |
|
|
Image Segmentation (Q)
|
98% |
16628
270.4 IPS |
|
|
Pose Estimation (SP)
|
100% |
151600
176.9 IPS |
|
|
Pose Estimation (HP)
|
100% |
349639
408.0 IPS |
|
|
Pose Estimation (Q)
|
97% |
133112
155.9 IPS |
|
|
Object Detection (SP)
|
100% |
12670
1.00 KIPS |
|
|
Object Detection (HP)
|
100% |
19753
1.57 KIPS |
|
|
Object Detection (Q)
|
88% |
10930
876.5 IPS |
|
|
Face Detection (SP)
|
100% |
30579
363.3 IPS |
|
|
Face Detection (HP)
|
100% |
45404
539.5 IPS |
|
|
Face Detection (Q)
|
97% |
25772
307.3 IPS |
|
|
Depth Estimation (SP)
|
100% |
59006
454.6 IPS |
|
|
Depth Estimation (HP)
|
99% |
105801
815.1 IPS |
|
|
Depth Estimation (Q)
|
70% |
44353
371.3 IPS |
|
|
Style Transfer (SP)
|
100% |
266373
342.4 IPS |
|
|
Style Transfer (HP)
|
100% |
586925
754.5 IPS |
|
|
Style Transfer (Q)
|
98% |
230818
297.6 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
45930
1.70 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
57044
2.11 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
32989
1.22 KIPS |
|
|
Text Classification (SP)
|
100% |
3508
4.68 KIPS |
|
|
Text Classification (HP)
|
99% |
4287
5.72 KIPS |
|
|
Text Classification (Q)
|
97% |
2149
2.88 KIPS |
|
|
Machine Translation (SP)
|
100% |
4789
82.5 IPS |
|
|
Machine Translation (HP)
|
100% |
4459
76.8 IPS |
|
|
Machine Translation (Q)
|
60% |
1962
43.8 IPS |