| User | danm1988 |
| Upload Date | September 12 2025 01:44 AM |
| Views | 10 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | NPU |
| Device | Intel(R) AI Boost |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro for Workstations (64-bit) |
| Model | Micro-Star International Co., Ltd. Prestige 16 AI+ Evo B2VMG |
| Motherboard | Micro-Star International Co., Ltd. MS-15A3 |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 288V |
| Topology | 1 Processor, 8 Cores |
| Identifier | GenuineIntel Family 6 Model 189 Stepping 1 |
| Base Frequency | 3.30 GHz |
| Cluster 1 | 4 Cores |
| Cluster 2 | 4 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
1615
300.3 IPS |
|
|
Image Classification (HP)
|
100% |
15686
2.92 KIPS |
|
|
Image Classification (Q)
|
100% |
20817
3.87 KIPS |
|
|
Image Segmentation (SP)
|
100% |
1990
32.3 IPS |
|
|
Image Segmentation (HP)
|
100% |
20683
335.3 IPS |
|
|
Image Segmentation (Q)
|
99% |
33956
550.4 IPS |
|
|
Pose Estimation (SP)
|
100% |
2873
3.35 IPS |
|
|
Pose Estimation (HP)
|
100% |
108402
126.5 IPS |
|
|
Pose Estimation (Q)
|
96% |
253588
297.1 IPS |
|
|
Object Detection (SP)
|
100% |
1280
101.6 IPS |
|
|
Object Detection (HP)
|
100% |
17687
1.40 KIPS |
|
|
Object Detection (Q)
|
88% |
27369
2.19 KIPS |
|
|
Face Detection (SP)
|
100% |
3760
44.7 IPS |
|
|
Face Detection (HP)
|
100% |
39182
465.6 IPS |
|
|
Face Detection (Q)
|
100% |
86112
1.02 KIPS |
|
|
Depth Estimation (SP)
|
100% |
4104
31.6 IPS |
|
|
Depth Estimation (HP)
|
97% |
81821
632.5 IPS |
|
|
Depth Estimation (Q)
|
88% |
159439
1.24 KIPS |
|
|
Style Transfer (SP)
|
100% |
6897
8.87 IPS |
|
|
Style Transfer (HP)
|
100% |
227316
292.2 IPS |
|
|
Style Transfer (Q)
|
98% |
397897
513.1 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
695
25.7 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
40929
1.51 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
76577
2.84 KIPS |
|
|
Text Classification (SP)
|
100% |
582
776.7 IPS |
|
|
Text Classification (HP)
|
100% |
2798
3.73 KIPS |
|
|
Text Classification (Q)
|
92% |
2835
3.81 KIPS |
|
|
Machine Translation (SP)
|
100% |
2206
38.0 IPS |
|
|
Machine Translation (HP)
|
100% |
4819
83.0 IPS |
|
|
Machine Translation (Q)
|
100% |
4910
84.6 IPS |