| User | Jockeeth |
| Upload Date | September 06 2025 03:21 AM |
| Views | 5 |
| AI Information | |
|---|---|
| Framework | TensorFlow Lite |
| Backend | NNAPI |
| Device | Samsung Exynos 2200 |
| System Information | |
|---|---|
| Operating System | Android 15 |
| Model | Samsung Galaxy S22 Ultra |
| Model ID | samsung SM-S908B |
| Motherboard | s5e9925 |
| Governor | energy_aware |
| CPU Information | |
|---|---|
| Name | ARM ARMv8 |
| Topology | 1 Processor, 8 Cores |
| Identifier | ARM implementer 65 architecture 8 variant 2 part 3400 revision 0 |
| Base Frequency | 1.82 GHz |
| Cluster 1 | 4 Cores @ 1.82 GHz |
| Cluster 2 | 3 Cores @ 2.52 GHz |
| Cluster 3 | 1 Core @ 2.80 GHz |
| Memory Information | |
|---|---|
| Size | 7.12 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
129
24.1 IPS |
|
|
Image Classification (HP)
|
100% |
130
24.2 IPS |
|
|
Image Classification (Q)
|
99% |
390
72.7 IPS |
|
|
Image Segmentation (SP)
|
100% |
169
2.74 IPS |
|
|
Image Segmentation (HP)
|
100% |
169
2.74 IPS |
|
|
Image Segmentation (Q)
|
98% |
392
6.37 IPS |
|
|
Pose Estimation (SP)
|
100% |
232
0.27 IPS |
|
|
Pose Estimation (HP)
|
100% |
234
0.27 IPS |
|
|
Pose Estimation (Q)
|
98% |
950
1.11 IPS |
|
|
Object Detection (SP)
|
100% |
127
10.1 IPS |
|
|
Object Detection (HP)
|
100% |
128
10.1 IPS |
|
|
Object Detection (Q)
|
87% |
402
32.2 IPS |
|
|
Face Detection (SP)
|
100% |
356
4.24 IPS |
|
|
Face Detection (HP)
|
100% |
359
4.27 IPS |
|
|
Face Detection (Q)
|
97% |
851
10.1 IPS |
|
|
Depth Estimation (SP)
|
100% |
294
2.26 IPS |
|
|
Depth Estimation (HP)
|
99% |
294
2.27 IPS |
|
|
Depth Estimation (Q)
|
64% |
642
5.82 IPS |
|
|
Style Transfer (SP)
|
100% |
435
0.56 IPS |
|
|
Style Transfer (HP)
|
100% |
435
0.56 IPS |
|
|
Style Transfer (Q)
|
98% |
1107
1.43 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
116
4.28 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
120
4.44 IPS |
|
|
Image Super-Resolution (Q)
|
97% |
443
16.4 IPS |
|
|
Text Classification (SP)
|
100% |
175
233.9 IPS |
|
|
Text Classification (HP)
|
100% |
147
195.6 IPS |
|
|
Text Classification (Q)
|
91% |
271
363.7 IPS |
|
|
Machine Translation (SP)
|
100% |
264
4.54 IPS |
|
|
Machine Translation (HP)
|
100% |
265
4.56 IPS |
|
|
Machine Translation (Q)
|
57% |
232
5.67 IPS |