| User | danm1988 |
| Upload Date | September 01 2025 03:57 AM |
| Views | 4 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | NPU |
| Device | Intel(R) AI Boost |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro for Workstations (64-bit) |
| Model | Micro-Star International Co., Ltd. Prestige 16 AI+ Evo B2VMG |
| Motherboard | Micro-Star International Co., Ltd. MS-15A3 |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 288V |
| Topology | 1 Processor, 8 Cores |
| Identifier | GenuineIntel Family 6 Model 189 Stepping 1 |
| Base Frequency | 3.30 GHz |
| Cluster 1 | 4 Cores |
| Cluster 2 | 4 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
1373
255.3 IPS |
|
|
Image Classification (HP)
|
100% |
16261
3.02 KIPS |
|
|
Image Classification (Q)
|
100% |
22729
4.23 KIPS |
|
|
Image Segmentation (SP)
|
100% |
1068
17.3 IPS |
|
|
Image Segmentation (HP)
|
100% |
16737
271.3 IPS |
|
|
Image Segmentation (Q)
|
99% |
31560
511.6 IPS |
|
|
Pose Estimation (SP)
|
100% |
1809
2.11 IPS |
|
|
Pose Estimation (HP)
|
100% |
111603
130.2 IPS |
|
|
Pose Estimation (Q)
|
96% |
254235
297.8 IPS |
|
|
Object Detection (SP)
|
100% |
1241
98.4 IPS |
|
|
Object Detection (HP)
|
100% |
17970
1.43 KIPS |
|
|
Object Detection (Q)
|
88% |
27041
2.17 KIPS |
|
|
Face Detection (SP)
|
100% |
3823
45.4 IPS |
|
|
Face Detection (HP)
|
100% |
41732
495.9 IPS |
|
|
Face Detection (Q)
|
100% |
70636
839.3 IPS |
|
|
Depth Estimation (SP)
|
100% |
1621
12.5 IPS |
|
|
Depth Estimation (HP)
|
97% |
79622
615.5 IPS |
|
|
Depth Estimation (Q)
|
88% |
159901
1.24 KIPS |
|
|
Style Transfer (SP)
|
100% |
7101
9.13 IPS |
|
|
Style Transfer (HP)
|
100% |
235377
302.6 IPS |
|
|
Style Transfer (Q)
|
98% |
429177
553.4 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
1453
53.7 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
43555
1.61 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
80823
2.99 KIPS |
|
|
Text Classification (SP)
|
100% |
1856
2.48 KIPS |
|
|
Text Classification (HP)
|
100% |
3264
4.36 KIPS |
|
|
Text Classification (Q)
|
92% |
3399
4.57 KIPS |
|
|
Machine Translation (SP)
|
100% |
3135
54.0 IPS |
|
|
Machine Translation (HP)
|
100% |
5034
86.7 IPS |
|
|
Machine Translation (Q)
|
100% |
5138
88.5 IPS |