| User | danm1988 |
| Upload Date | September 01 2025 03:30 AM |
| Views | 10 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | NPU |
| Device | Intel(R) AI Boost |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro for Workstations (64-bit) |
| Model | Micro-Star International Co., Ltd. Prestige 16 AI+ Evo B2VMG |
| Motherboard | Micro-Star International Co., Ltd. MS-15A3 |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 288V |
| Topology | 1 Processor, 8 Cores |
| Identifier | GenuineIntel Family 6 Model 189 Stepping 1 |
| Base Frequency | 3.30 GHz |
| Cluster 1 | 4 Cores |
| Cluster 2 | 4 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
1651
306.9 IPS |
|
|
Image Classification (HP)
|
100% |
12551
2.33 KIPS |
|
|
Image Classification (Q)
|
100% |
18469
3.43 KIPS |
|
|
Image Segmentation (SP)
|
100% |
1960
31.8 IPS |
|
|
Image Segmentation (HP)
|
100% |
6243
101.2 IPS |
|
|
Image Segmentation (Q)
|
99% |
9133
148.1 IPS |
|
|
Pose Estimation (SP)
|
100% |
3047
3.55 IPS |
|
|
Pose Estimation (HP)
|
100% |
100518
117.3 IPS |
|
|
Pose Estimation (Q)
|
96% |
203572
238.5 IPS |
|
|
Object Detection (SP)
|
100% |
1369
108.6 IPS |
|
|
Object Detection (HP)
|
100% |
13741
1.09 KIPS |
|
|
Object Detection (Q)
|
87% |
22139
1.78 KIPS |
|
|
Face Detection (SP)
|
100% |
4735
56.3 IPS |
|
|
Face Detection (HP)
|
100% |
26276
312.2 IPS |
|
|
Face Detection (Q)
|
100% |
54972
653.2 IPS |
|
|
Depth Estimation (SP)
|
100% |
4092
31.5 IPS |
|
|
Depth Estimation (HP)
|
99% |
59818
460.9 IPS |
|
|
Depth Estimation (Q)
|
88% |
111818
870.2 IPS |
|
|
Style Transfer (SP)
|
100% |
9120
11.7 IPS |
|
|
Style Transfer (HP)
|
100% |
159327
204.8 IPS |
|
|
Style Transfer (Q)
|
98% |
332425
428.7 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
1883
69.5 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
33606
1.24 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
50632
1.88 KIPS |
|
|
Text Classification (SP)
|
100% |
2111
2.82 KIPS |
|
|
Text Classification (HP)
|
100% |
2338
3.12 KIPS |
|
|
Text Classification (Q)
|
92% |
2051
2.76 KIPS |
|
|
Machine Translation (SP)
|
100% |
3305
56.9 IPS |
|
|
Machine Translation (HP)
|
100% |
2907
50.1 IPS |
|
|
Machine Translation (Q)
|
100% |
3018
52.0 IPS |