| User | danm1988 |
| Upload Date | August 30 2025 06:08 PM |
| Views | 4 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | GPU |
| Device | Intel(R) Arc(TM) 140V GPU (16GB) (iGPU) |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro for Workstations (64-bit) |
| Model | Micro-Star International Co., Ltd. Prestige 16 AI+ Evo B2VMG |
| Motherboard | Micro-Star International Co., Ltd. MS-15A3 |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 288V |
| Topology | 1 Processor, 8 Cores |
| Identifier | GenuineIntel Family 6 Model 189 Stepping 1 |
| Base Frequency | 3.30 GHz |
| Cluster 1 | 4 Cores |
| Cluster 2 | 4 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
7399
1.38 KIPS |
|
|
Image Classification (HP)
|
100% |
15617
2.90 KIPS |
|
|
Image Classification (Q)
|
100% |
18677
3.47 KIPS |
|
|
Image Segmentation (SP)
|
100% |
9903
160.5 IPS |
|
|
Image Segmentation (HP)
|
100% |
25670
416.1 IPS |
|
|
Image Segmentation (Q)
|
99% |
30839
499.9 IPS |
|
|
Pose Estimation (SP)
|
100% |
22862
26.7 IPS |
|
|
Pose Estimation (HP)
|
100% |
129971
151.7 IPS |
|
|
Pose Estimation (Q)
|
97% |
262772
307.6 IPS |
|
|
Object Detection (SP)
|
100% |
6617
524.9 IPS |
|
|
Object Detection (HP)
|
100% |
16651
1.32 KIPS |
|
|
Object Detection (Q)
|
88% |
16808
1.35 KIPS |
|
|
Face Detection (SP)
|
100% |
14015
166.5 IPS |
|
|
Face Detection (HP)
|
100% |
29058
345.3 IPS |
|
|
Face Detection (Q)
|
100% |
37245
442.5 IPS |
|
|
Depth Estimation (SP)
|
100% |
25607
197.3 IPS |
|
|
Depth Estimation (HP)
|
99% |
60313
464.7 IPS |
|
|
Depth Estimation (Q)
|
89% |
70348
547.1 IPS |
|
|
Style Transfer (SP)
|
100% |
55462
71.3 IPS |
|
|
Style Transfer (HP)
|
100% |
164794
211.8 IPS |
|
|
Style Transfer (Q)
|
98% |
188604
243.2 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
10030
370.4 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
27953
1.03 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
33338
1.23 KIPS |
|
|
Text Classification (SP)
|
100% |
4511
6.02 KIPS |
|
|
Text Classification (HP)
|
100% |
5706
7.62 KIPS |
|
|
Text Classification (Q)
|
92% |
3779
5.08 KIPS |
|
|
Machine Translation (SP)
|
100% |
3094
53.3 IPS |
|
|
Machine Translation (HP)
|
100% |
5481
94.4 IPS |
|
|
Machine Translation (Q)
|
100% |
5811
100.1 IPS |