| User | GyBHard |
| Upload Date | August 26 2025 08:58 AM |
| Views | 7 |
| AI Information | |
|---|---|
| Framework | TensorFlow Lite |
| Backend | CPU |
| Device | ARM ARMv8 |
| System Information | |
|---|---|
| Operating System | Android 14 |
| Model | samsung SM-A245M |
| Model ID | samsung SM-A245M |
| Motherboard | a24 |
| CPU Information | |
|---|---|
| Name | ARM ARMv8 |
| Topology | 1 Processor, 8 Cores |
| Identifier | ARM implementer 65 architecture 8 variant 4 part 3339 revision 0 |
| Base Frequency | 2.00 GHz |
| Cluster 1 | 6 Cores @ 2.00 GHz |
| Cluster 2 | 2 Cores @ 2.20 GHz |
| Memory Information | |
|---|---|
| Size | 5.53 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
225
41.9 IPS |
|
|
Image Classification (HP)
|
100% |
226
42.1 IPS |
|
|
Image Classification (Q)
|
100% |
649
120.6 IPS |
|
|
Image Segmentation (SP)
|
100% |
282
4.57 IPS |
|
|
Image Segmentation (HP)
|
100% |
284
4.60 IPS |
|
|
Image Segmentation (Q)
|
98% |
712
11.6 IPS |
|
|
Pose Estimation (SP)
|
100% |
1125
1.31 IPS |
|
|
Pose Estimation (HP)
|
100% |
1123
1.31 IPS |
|
|
Pose Estimation (Q)
|
84% |
1619
1.92 IPS |
|
|
Object Detection (SP)
|
100% |
230
18.2 IPS |
|
|
Object Detection (HP)
|
100% |
230
18.3 IPS |
|
|
Object Detection (Q)
|
83% |
634
51.2 IPS |
|
|
Face Detection (SP)
|
100% |
739
8.78 IPS |
|
|
Face Detection (HP)
|
100% |
734
8.72 IPS |
|
|
Face Detection (Q)
|
95% |
1468
17.5 IPS |
|
|
Depth Estimation (SP)
|
100% |
954
7.35 IPS |
|
|
Depth Estimation (HP)
|
99% |
922
7.11 IPS |
|
|
Depth Estimation (Q)
|
64% |
1487
13.6 IPS |
|
|
Style Transfer (SP)
|
89% |
1863
2.42 IPS |
|
|
Style Transfer (HP)
|
89% |
1864
2.42 IPS |
|
|
Style Transfer (Q)
|
98% |
3706
4.78 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
497
18.4 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
499
18.4 IPS |
|
|
Image Super-Resolution (Q)
|
97% |
893
33.1 IPS |
|
|
Text Classification (SP)
|
100% |
278
371.7 IPS |
|
|
Text Classification (HP)
|
100% |
278
371.1 IPS |
|
|
Text Classification (Q)
|
88% |
486
655.6 IPS |
|
|
Machine Translation (SP)
|
100% |
477
8.22 IPS |
|
|
Machine Translation (HP)
|
100% |
477
8.22 IPS |
|
|
Machine Translation (Q)
|
50% |
343
12.2 IPS |