| User | TomKauw |
| Upload Date | August 14 2025 02:04 PM |
| Views | 5 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | NPU |
| Device | Intel(R) AI Boost |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Home (64-bit) |
| Model | Micro-Star International Co., Ltd. Vector 17 HX AI A2XWIG |
| Motherboard | Micro-Star International Co., Ltd. MS-17S3 |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 275HX |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 2.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
5812
1.08 KIPS |
|
|
Image Classification (HP)
|
100% |
6905
1.28 KIPS |
|
|
Image Classification (Q)
|
100% |
9611
1.79 KIPS |
|
|
Image Segmentation (SP)
|
100% |
7986
129.5 IPS |
|
|
Image Segmentation (HP)
|
100% |
2862
46.4 IPS |
|
|
Image Segmentation (Q)
|
99% |
3888
63.0 IPS |
|
|
Pose Estimation (SP)
|
100% |
13463
15.7 IPS |
|
|
Pose Estimation (HP)
|
100% |
34269
40.0 IPS |
|
|
Pose Estimation (Q)
|
96% |
73664
86.3 IPS |
|
|
Object Detection (SP)
|
100% |
5593
443.6 IPS |
|
|
Object Detection (HP)
|
100% |
6129
486.2 IPS |
|
|
Object Detection (Q)
|
87% |
9977
800.7 IPS |
|
|
Face Detection (SP)
|
100% |
15998
190.1 IPS |
|
|
Face Detection (HP)
|
100% |
16351
194.3 IPS |
|
|
Face Detection (Q)
|
100% |
31332
372.3 IPS |
|
|
Depth Estimation (SP)
|
100% |
14170
109.2 IPS |
|
|
Depth Estimation (HP)
|
99% |
17572
135.4 IPS |
|
|
Depth Estimation (Q)
|
88% |
34051
264.9 IPS |
|
|
Style Transfer (SP)
|
100% |
37858
48.7 IPS |
|
|
Style Transfer (HP)
|
100% |
50470
64.9 IPS |
|
|
Style Transfer (Q)
|
98% |
91069
117.4 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
8055
297.4 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
14189
523.9 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
23583
873.4 IPS |
|
|
Text Classification (SP)
|
100% |
4103
5.48 KIPS |
|
|
Text Classification (HP)
|
100% |
2058
2.75 KIPS |
|
|
Text Classification (Q)
|
92% |
2061
2.77 KIPS |
|
|
Machine Translation (SP)
|
100% |
3749
64.6 IPS |
|
|
Machine Translation (HP)
|
100% |
4362
75.1 IPS |
|
|
Machine Translation (Q)
|
100% |
4410
76.0 IPS |