| User | TomKauw |
| Upload Date | August 14 2025 02:02 PM |
| Views | 8 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | GPU |
| Device | Intel(R) Graphics (iGPU) |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Home (64-bit) |
| Model | Micro-Star International Co., Ltd. Vector 17 HX AI A2XWIG |
| Motherboard | Micro-Star International Co., Ltd. MS-17S3 |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 275HX |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 2.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
3829
712.0 IPS |
|
|
Image Classification (HP)
|
100% |
5839
1.09 KIPS |
|
|
Image Classification (Q)
|
100% |
7615
1.42 KIPS |
|
|
Image Segmentation (SP)
|
100% |
3892
63.1 IPS |
|
|
Image Segmentation (HP)
|
100% |
8715
141.3 IPS |
|
|
Image Segmentation (Q)
|
99% |
10938
177.3 IPS |
|
|
Pose Estimation (SP)
|
100% |
11211
13.1 IPS |
|
|
Pose Estimation (HP)
|
99% |
10205
11.9 IPS |
|
|
Pose Estimation (Q)
|
97% |
34640
40.6 IPS |
|
|
Object Detection (SP)
|
100% |
3347
265.5 IPS |
|
|
Object Detection (HP)
|
100% |
5231
415.0 IPS |
|
|
Object Detection (Q)
|
88% |
9155
733.6 IPS |
|
|
Face Detection (SP)
|
100% |
7880
93.6 IPS |
|
|
Face Detection (HP)
|
100% |
15446
183.5 IPS |
|
|
Face Detection (Q)
|
100% |
24916
296.1 IPS |
|
|
Depth Estimation (SP)
|
100% |
11961
92.2 IPS |
|
|
Depth Estimation (HP)
|
98% |
21615
167.1 IPS |
|
|
Depth Estimation (Q)
|
89% |
24426
189.9 IPS |
|
|
Style Transfer (SP)
|
100% |
27872
35.8 IPS |
|
|
Style Transfer (HP)
|
100% |
37686
48.4 IPS |
|
|
Style Transfer (Q)
|
98% |
80595
103.9 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
4986
184.1 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
9040
333.8 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
13861
513.3 IPS |
|
|
Text Classification (SP)
|
71% |
1498
2.17 KIPS |
|
|
Text Classification (HP)
|
71% |
2360
3.41 KIPS |
|
|
Text Classification (Q)
|
92% |
2520
3.39 KIPS |
|
|
Machine Translation (SP)
|
100% |
1975
34.0 IPS |
|
|
Machine Translation (HP)
|
98% |
3612
62.4 IPS |
|
|
Machine Translation (Q)
|
98% |
3565
61.6 IPS |