| User | TomKauw |
| Upload Date | August 14 2025 01:58 PM |
| Views | 8 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | CPU |
| Device | Intel(R) Core(TM) Ultra 9 275HX |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Home (64-bit) |
| Model | Micro-Star International Co., Ltd. Vector 17 HX AI A2XWIG |
| Motherboard | Micro-Star International Co., Ltd. MS-17S3 |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 275HX |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 2.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
5644
1.05 KIPS |
|
|
Image Classification (HP)
|
100% |
6375
1.19 KIPS |
|
|
Image Classification (Q)
|
100% |
9967
1.85 KIPS |
|
|
Image Segmentation (SP)
|
100% |
8053
130.6 IPS |
|
|
Image Segmentation (HP)
|
100% |
4401
71.3 IPS |
|
|
Image Segmentation (Q)
|
99% |
12681
205.6 IPS |
|
|
Pose Estimation (SP)
|
100% |
13337
15.6 IPS |
|
|
Pose Estimation (HP)
|
100% |
13335
15.6 IPS |
|
|
Pose Estimation (Q)
|
96% |
30573
35.8 IPS |
|
|
Object Detection (SP)
|
100% |
5725
454.1 IPS |
|
|
Object Detection (HP)
|
100% |
6565
520.8 IPS |
|
|
Object Detection (Q)
|
88% |
11136
892.7 IPS |
|
|
Face Detection (SP)
|
100% |
16242
193.0 IPS |
|
|
Face Detection (HP)
|
100% |
19345
229.9 IPS |
|
|
Face Detection (Q)
|
100% |
29357
348.8 IPS |
|
|
Depth Estimation (SP)
|
100% |
14136
108.9 IPS |
|
|
Depth Estimation (HP)
|
99% |
16912
130.3 IPS |
|
|
Depth Estimation (Q)
|
89% |
30694
238.7 IPS |
|
|
Style Transfer (SP)
|
100% |
26933
34.6 IPS |
|
|
Style Transfer (HP)
|
100% |
23354
30.0 IPS |
|
|
Style Transfer (Q)
|
98% |
89543
115.5 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
8087
298.6 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
8382
309.5 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
17260
639.2 IPS |
|
|
Text Classification (SP)
|
100% |
4087
5.46 KIPS |
|
|
Text Classification (HP)
|
100% |
3239
4.32 KIPS |
|
|
Text Classification (Q)
|
92% |
6067
8.15 KIPS |
|
|
Machine Translation (SP)
|
100% |
3564
61.4 IPS |
|
|
Machine Translation (HP)
|
100% |
7184
123.8 IPS |
|
|
Machine Translation (Q)
|
100% |
3992
68.8 IPS |