| User | danm1988 |
| Upload Date | August 03 2025 11:55 AM |
| Views | 12 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | NPU |
| Device | Intel(R) AI Boost |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro for Workstations (64-bit) |
| Model | Micro-Star International Co., Ltd. Prestige 16 AI+ Evo B2VMG |
| Motherboard | Micro-Star International Co., Ltd. MS-15A3 |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 288V |
| Topology | 1 Processor, 8 Cores |
| Identifier | GenuineIntel Family 6 Model 189 Stepping 1 |
| Base Frequency | 3.30 GHz |
| Cluster 1 | 4 Cores |
| Cluster 2 | 4 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
1796
333.9 IPS |
|
|
Image Classification (HP)
|
100% |
16037
2.98 KIPS |
|
|
Image Classification (Q)
|
100% |
21390
3.98 KIPS |
|
|
Image Segmentation (SP)
|
100% |
2130
34.5 IPS |
|
|
Image Segmentation (HP)
|
100% |
20643
334.6 IPS |
|
|
Image Segmentation (Q)
|
99% |
32679
529.8 IPS |
|
|
Pose Estimation (SP)
|
100% |
3406
3.97 IPS |
|
|
Pose Estimation (HP)
|
100% |
114100
133.1 IPS |
|
|
Pose Estimation (Q)
|
96% |
249850
292.7 IPS |
|
|
Object Detection (SP)
|
100% |
1853
147.0 IPS |
|
|
Object Detection (HP)
|
100% |
16813
1.33 KIPS |
|
|
Object Detection (Q)
|
88% |
26934
2.16 KIPS |
|
|
Face Detection (SP)
|
100% |
5317
63.2 IPS |
|
|
Face Detection (HP)
|
100% |
40589
482.3 IPS |
|
|
Face Detection (Q)
|
100% |
86638
1.03 KIPS |
|
|
Depth Estimation (SP)
|
100% |
4702
36.2 IPS |
|
|
Depth Estimation (HP)
|
93% |
77404
599.6 IPS |
|
|
Depth Estimation (Q)
|
88% |
160456
1.25 KIPS |
|
|
Style Transfer (SP)
|
100% |
10132
13.0 IPS |
|
|
Style Transfer (HP)
|
100% |
230724
296.6 IPS |
|
|
Style Transfer (Q)
|
98% |
411276
530.3 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
2143
79.1 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
40057
1.48 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
77637
2.88 KIPS |
|
|
Text Classification (SP)
|
100% |
2099
2.80 KIPS |
|
|
Text Classification (HP)
|
100% |
3181
4.25 KIPS |
|
|
Text Classification (Q)
|
92% |
3177
4.27 KIPS |
|
|
Machine Translation (SP)
|
100% |
3560
61.3 IPS |
|
|
Machine Translation (HP)
|
100% |
4303
74.1 IPS |
|
|
Machine Translation (Q)
|
100% |
4293
73.9 IPS |