| User | danm1988 |
| Upload Date | July 31 2025 02:47 AM |
| Views | 5 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | GPU |
| Device | Intel(R) Arc(TM) 140V GPU (16GB) (iGPU) |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro for Workstations (64-bit) |
| Model | Micro-Star International Co., Ltd. Prestige 16 AI+ Evo B2VMG |
| Motherboard | Micro-Star International Co., Ltd. MS-15A3 |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 288V |
| Topology | 1 Processor, 8 Cores |
| Identifier | GenuineIntel Family 6 Model 189 Stepping 1 |
| Base Frequency | 3.30 GHz |
| Cluster 1 | 4 Cores |
| Cluster 2 | 4 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
7090
1.32 KIPS |
|
|
Image Classification (HP)
|
100% |
14407
2.68 KIPS |
|
|
Image Classification (Q)
|
100% |
17240
3.21 KIPS |
|
|
Image Segmentation (SP)
|
100% |
9304
150.8 IPS |
|
|
Image Segmentation (HP)
|
100% |
23872
387.0 IPS |
|
|
Image Segmentation (Q)
|
99% |
28833
467.4 IPS |
|
|
Pose Estimation (SP)
|
100% |
20570
24.0 IPS |
|
|
Pose Estimation (HP)
|
100% |
130269
152.0 IPS |
|
|
Pose Estimation (Q)
|
97% |
249915
292.6 IPS |
|
|
Object Detection (SP)
|
100% |
6335
502.5 IPS |
|
|
Object Detection (HP)
|
100% |
16258
1.29 KIPS |
|
|
Object Detection (Q)
|
88% |
15582
1.25 KIPS |
|
|
Face Detection (SP)
|
100% |
13975
166.1 IPS |
|
|
Face Detection (HP)
|
100% |
29794
354.0 IPS |
|
|
Face Detection (Q)
|
100% |
38216
454.1 IPS |
|
|
Depth Estimation (SP)
|
100% |
23181
178.6 IPS |
|
|
Depth Estimation (HP)
|
99% |
56900
438.4 IPS |
|
|
Depth Estimation (Q)
|
89% |
68732
534.5 IPS |
|
|
Style Transfer (SP)
|
100% |
48936
62.9 IPS |
|
|
Style Transfer (HP)
|
100% |
158117
203.3 IPS |
|
|
Style Transfer (Q)
|
98% |
170702
220.1 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
9301
343.4 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
28360
1.05 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
30228
1.12 KIPS |
|
|
Text Classification (SP)
|
100% |
3120
4.16 KIPS |
|
|
Text Classification (HP)
|
100% |
4814
6.43 KIPS |
|
|
Text Classification (Q)
|
92% |
3187
4.28 KIPS |
|
|
Machine Translation (SP)
|
100% |
3119
53.7 IPS |
|
|
Machine Translation (HP)
|
100% |
5681
97.9 IPS |
|
|
Machine Translation (Q)
|
100% |
5879
101.3 IPS |