| User | lnrsoft |
| Upload Date | July 16 2025 09:00 PM |
| Views | 9 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 3090 Ti |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | ASUS System Product Name |
| Motherboard | ASUSTeK COMPUTER INC. ROG CROSSHAIR VIII DARK HERO |
| Power Plan | Bitsum Highest Performance |
| CPU Information | |
|---|---|
| Name | AMD Ryzen 9 5950X |
| Topology | 1 Processor, 16 Cores, 32 Threads |
| Identifier | AuthenticAMD Family 25 Model 33 Stepping 2 |
| Base Frequency | 3.40 GHz |
| Cluster 1 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
10621
1.98 KIPS |
|
|
Image Classification (HP)
|
99% |
14643
2.73 KIPS |
|
|
Image Classification (Q)
|
100% |
7030
1.31 KIPS |
|
|
Image Segmentation (SP)
|
100% |
19991
324.1 IPS |
|
|
Image Segmentation (HP)
|
100% |
28675
464.8 IPS |
|
|
Image Segmentation (Q)
|
98% |
13704
222.8 IPS |
|
|
Pose Estimation (SP)
|
100% |
206632
241.1 IPS |
|
|
Pose Estimation (HP)
|
100% |
390371
455.5 IPS |
|
|
Pose Estimation (Q)
|
96% |
148105
173.5 IPS |
|
|
Object Detection (SP)
|
100% |
14157
1.12 KIPS |
|
|
Object Detection (HP)
|
100% |
19216
1.52 KIPS |
|
|
Object Detection (Q)
|
85% |
9217
741.5 IPS |
|
|
Face Detection (SP)
|
100% |
38148
453.3 IPS |
|
|
Face Detection (HP)
|
100% |
54335
645.6 IPS |
|
|
Face Detection (Q)
|
97% |
24288
289.6 IPS |
|
|
Depth Estimation (SP)
|
100% |
68695
529.3 IPS |
|
|
Depth Estimation (HP)
|
99% |
111587
859.7 IPS |
|
|
Depth Estimation (Q)
|
77% |
40483
324.2 IPS |
|
|
Style Transfer (SP)
|
100% |
300619
386.4 IPS |
|
|
Style Transfer (HP)
|
100% |
684403
879.8 IPS |
|
|
Style Transfer (Q)
|
98% |
210292
271.2 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
42044
1.55 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
56926
2.10 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
23518
870.9 IPS |
|
|
Text Classification (SP)
|
100% |
2999
4.00 KIPS |
|
|
Text Classification (HP)
|
99% |
3779
5.04 KIPS |
|
|
Text Classification (Q)
|
97% |
1502
2.01 KIPS |
|
|
Machine Translation (SP)
|
100% |
5260
90.6 IPS |
|
|
Machine Translation (HP)
|
100% |
5155
88.8 IPS |
|
|
Machine Translation (Q)
|
70% |
1700
31.9 IPS |