| User | teknoseyir |
| Upload Date | July 10 2025 02:08 PM |
| Views | 8 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | CPU |
| Device | Intel(R) Core(TM) Ultra 9 275HX |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Home Single Language (64-bit) |
| Model | Micro-Star International Co., Ltd. Vector 17 HX AI A2XWIG |
| Motherboard | Micro-Star International Co., Ltd. MS-17S3 |
| Power Plan | Dengeli |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 275HX |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 2.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
4792
891.1 IPS |
|
|
Image Classification (HP)
|
100% |
832
154.8 IPS |
|
|
Image Classification (Q)
|
99% |
8790
1.64 KIPS |
|
|
Image Segmentation (SP)
|
100% |
2763
44.8 IPS |
|
|
Image Segmentation (HP)
|
100% |
1521
24.7 IPS |
|
|
Image Segmentation (Q)
|
98% |
14607
237.5 IPS |
|
|
Pose Estimation (SP)
|
100% |
12248
14.3 IPS |
|
|
Pose Estimation (HP)
|
100% |
6815
7.95 IPS |
|
|
Pose Estimation (Q)
|
94% |
37625
44.1 IPS |
|
|
Object Detection (SP)
|
100% |
4574
362.8 IPS |
|
|
Object Detection (HP)
|
100% |
1067
84.6 IPS |
|
|
Object Detection (Q)
|
86% |
9747
783.3 IPS |
|
|
Face Detection (SP)
|
100% |
13451
159.8 IPS |
|
|
Face Detection (HP)
|
100% |
2462
29.3 IPS |
|
|
Face Detection (Q)
|
97% |
12363
147.4 IPS |
|
|
Depth Estimation (SP)
|
100% |
13232
101.9 IPS |
|
|
Depth Estimation (HP)
|
99% |
3245
25.0 IPS |
|
|
Depth Estimation (Q)
|
78% |
22036
175.8 IPS |
|
|
Style Transfer (SP)
|
100% |
25108
32.3 IPS |
|
|
Style Transfer (HP)
|
100% |
16610
21.4 IPS |
|
|
Style Transfer (Q)
|
98% |
24499
31.6 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
3638
134.3 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
3075
113.6 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
6164
228.2 IPS |
|
|
Text Classification (SP)
|
100% |
1795
2.40 KIPS |
|
|
Text Classification (HP)
|
100% |
909
1.21 KIPS |
|
|
Text Classification (Q)
|
97% |
1487
1.99 KIPS |
|
|
Machine Translation (SP)
|
100% |
3005
51.8 IPS |
|
|
Machine Translation (HP)
|
100% |
1409
24.3 IPS |
|
|
Machine Translation (Q)
|
65% |
3926
78.9 IPS |