| User | neo9922 |
| Upload Date | July 04 2025 09:40 PM |
| Views | 10 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | GPU |
| Device | Intel(R) Graphics (iGPU) |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Professionnel (64-bit) |
| Model | ASRock Z890 Riptide WiFi |
| Motherboard | ASRock Z890 Riptide WiFi |
| Power Plan | Utilisation normale |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 7 265K |
| Topology | 1 Processor, 20 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 3.90 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 12 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
4111
764.5 IPS |
|
|
Image Classification (HP)
|
100% |
6231
1.16 KIPS |
|
|
Image Classification (Q)
|
100% |
8266
1.54 KIPS |
|
|
Image Segmentation (SP)
|
100% |
4073
66.0 IPS |
|
|
Image Segmentation (HP)
|
100% |
9269
150.3 IPS |
|
|
Image Segmentation (Q)
|
99% |
11831
191.8 IPS |
|
|
Pose Estimation (SP)
|
100% |
12123
14.1 IPS |
|
|
Pose Estimation (HP)
|
99% |
11440
13.4 IPS |
|
|
Pose Estimation (Q)
|
97% |
38323
44.9 IPS |
|
|
Object Detection (SP)
|
100% |
3727
295.6 IPS |
|
|
Object Detection (HP)
|
100% |
6160
488.6 IPS |
|
|
Object Detection (Q)
|
88% |
9473
759.1 IPS |
|
|
Face Detection (SP)
|
100% |
8013
95.2 IPS |
|
|
Face Detection (HP)
|
100% |
16712
198.6 IPS |
|
|
Face Detection (Q)
|
100% |
25889
307.6 IPS |
|
|
Depth Estimation (SP)
|
100% |
12840
98.9 IPS |
|
|
Depth Estimation (HP)
|
98% |
22831
176.5 IPS |
|
|
Depth Estimation (Q)
|
89% |
26789
208.2 IPS |
|
|
Style Transfer (SP)
|
100% |
30105
38.7 IPS |
|
|
Style Transfer (HP)
|
100% |
42425
54.5 IPS |
|
|
Style Transfer (Q)
|
98% |
90571
116.8 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
5341
197.2 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
9672
357.1 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
15751
583.3 IPS |
|
|
Text Classification (SP)
|
71% |
1677
2.43 KIPS |
|
|
Text Classification (HP)
|
71% |
2589
3.74 KIPS |
|
|
Text Classification (Q)
|
92% |
2686
3.61 KIPS |
|
|
Machine Translation (SP)
|
100% |
2113
36.4 IPS |
|
|
Machine Translation (HP)
|
98% |
3855
66.6 IPS |
|
|
Machine Translation (Q)
|
98% |
3843
66.4 IPS |