| User | slimg |
| Upload Date | July 03 2025 08:41 AM |
| Views | 10 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | GPU |
| Device | Intel(R) Graphics (iGPU) |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Enterprise (64-bit) |
| Model | LENOVO 21G3S17800 |
| Motherboard | LENOVO 21G3S17800 |
| Power Plan | Corporate Power Scheme (Balanced) |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 7 165H |
| Topology | 1 Processor, 16 Cores, 22 Threads |
| Identifier | GenuineIntel Family 6 Model 170 Stepping 4 |
| Base Frequency | 1.40 GHz |
| Cluster 1 | 6 Cores |
| Cluster 2 | 10 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
4367
812.1 IPS |
|
|
Image Classification (HP)
|
100% |
7148
1.33 KIPS |
|
|
Image Classification (Q)
|
100% |
9259
1.72 KIPS |
|
|
Image Segmentation (SP)
|
100% |
2403
39.0 IPS |
|
|
Image Segmentation (HP)
|
100% |
7249
117.5 IPS |
|
|
Image Segmentation (Q)
|
99% |
12445
201.7 IPS |
|
|
Pose Estimation (SP)
|
100% |
17456
20.4 IPS |
|
|
Pose Estimation (HP)
|
99% |
19690
23.0 IPS |
|
|
Pose Estimation (Q)
|
97% |
70832
82.9 IPS |
|
|
Object Detection (SP)
|
100% |
3589
284.7 IPS |
|
|
Object Detection (HP)
|
100% |
6987
554.2 IPS |
|
|
Object Detection (Q)
|
88% |
11769
943.1 IPS |
|
|
Face Detection (SP)
|
100% |
4793
57.0 IPS |
|
|
Face Detection (HP)
|
100% |
10760
127.9 IPS |
|
|
Face Detection (Q)
|
100% |
22538
267.8 IPS |
|
|
Depth Estimation (SP)
|
100% |
13607
104.8 IPS |
|
|
Depth Estimation (HP)
|
98% |
26568
205.3 IPS |
|
|
Depth Estimation (Q)
|
89% |
35877
278.9 IPS |
|
|
Style Transfer (SP)
|
100% |
39028
50.2 IPS |
|
|
Style Transfer (HP)
|
100% |
59304
76.2 IPS |
|
|
Style Transfer (Q)
|
98% |
149257
192.5 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
7302
269.6 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
13367
493.6 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
21522
797.1 IPS |
|
|
Text Classification (SP)
|
71% |
1731
2.50 KIPS |
|
|
Text Classification (HP)
|
71% |
2512
3.63 KIPS |
|
|
Text Classification (Q)
|
92% |
2746
3.69 KIPS |
|
|
Machine Translation (SP)
|
100% |
1818
31.3 IPS |
|
|
Machine Translation (HP)
|
98% |
3407
58.9 IPS |
|
|
Machine Translation (Q)
|
98% |
3501
60.5 IPS |