| User | Benster412 |
| Upload Date | June 30 2025 03:24 PM |
| Views | 9 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 5080 |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | ASUS System Product Name |
| Motherboard | ASUSTeK COMPUTER INC. ROG MAXIMUS Z890 HERO |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 7 265K |
| Topology | 1 Processor, 20 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 3.90 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 12 Cores |
| Memory Information | |
|---|---|
| Size | 64.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
15329
2.85 KIPS |
|
|
Image Classification (HP)
|
100% |
22285
4.14 KIPS |
|
|
Image Classification (Q)
|
100% |
13432
2.50 KIPS |
|
|
Image Segmentation (SP)
|
100% |
30723
498.0 IPS |
|
|
Image Segmentation (HP)
|
100% |
43141
699.3 IPS |
|
|
Image Segmentation (Q)
|
98% |
27107
440.8 IPS |
|
|
Pose Estimation (SP)
|
100% |
251497
293.5 IPS |
|
|
Pose Estimation (HP)
|
100% |
759298
886.0 IPS |
|
|
Pose Estimation (Q)
|
96% |
214945
251.8 IPS |
|
|
Object Detection (SP)
|
100% |
19792
1.57 KIPS |
|
|
Object Detection (HP)
|
100% |
29782
2.36 KIPS |
|
|
Object Detection (Q)
|
86% |
16971
1.36 KIPS |
|
|
Face Detection (SP)
|
100% |
58660
697.0 IPS |
|
|
Face Detection (HP)
|
100% |
85604
1.02 KIPS |
|
|
Face Detection (Q)
|
97% |
47867
570.7 IPS |
|
|
Depth Estimation (SP)
|
100% |
96489
743.4 IPS |
|
|
Depth Estimation (HP)
|
99% |
175312
1.35 KIPS |
|
|
Depth Estimation (Q)
|
78% |
70146
560.2 IPS |
|
|
Style Transfer (SP)
|
100% |
368760
474.0 IPS |
|
|
Style Transfer (HP)
|
100% |
1195756
1.54 KIPS |
|
|
Style Transfer (Q)
|
98% |
320323
413.0 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
58578
2.16 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
90236
3.33 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
43500
1.61 KIPS |
|
|
Text Classification (SP)
|
100% |
4142
5.53 KIPS |
|
|
Text Classification (HP)
|
100% |
5192
6.93 KIPS |
|
|
Text Classification (Q)
|
97% |
2563
3.43 KIPS |
|
|
Machine Translation (SP)
|
100% |
7689
132.4 IPS |
|
|
Machine Translation (HP)
|
100% |
7646
131.7 IPS |
|
|
Machine Translation (Q)
|
70% |
3230
60.6 IPS |