Upload Date | June 29 2025 07:38 AM |
Views | 5 |
AI Information | |
---|---|
Framework | ONNX |
Backend | DirectML |
Device | NVIDIA GeForce RTX 5080 Laptop GPU |
System Information | |
---|---|
Operating System | Microsoft Windows 11 Home Single Language (64-bit) |
Model | Micro-Star International Co., Ltd. Vector 16 HX AI A2XWIG |
Motherboard | Micro-Star International Co., Ltd. MS-15M3 |
Power Plan | Balanced |
CPU Information | |
---|---|
Name | Intel(R) Core(TM) Ultra 9 275HX |
Topology | 1 Processor, 24 Cores |
Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
Base Frequency | 2.70 GHz |
Cluster 1 | 8 Cores |
Cluster 2 | 16 Cores |
Memory Information | |
---|---|
Size | 32.00 GB |
Workload | Accuracy | Score | |
---|---|---|---|
Image Classification (SP)
|
100% |
4850
902.0 IPS |
|
Image Classification (HP)
|
100% |
8598
1.60 KIPS |
|
Image Classification (Q)
|
100% |
4240
788.6 IPS |
|
Image Segmentation (SP)
|
100% |
10741
174.1 IPS |
|
Image Segmentation (HP)
|
100% |
18662
302.5 IPS |
|
Image Segmentation (Q)
|
98% |
9389
152.7 IPS |
|
Pose Estimation (SP)
|
100% |
64164
74.9 IPS |
|
Pose Estimation (HP)
|
100% |
182209
212.6 IPS |
|
Pose Estimation (Q)
|
96% |
56562
66.3 IPS |
|
Object Detection (SP)
|
100% |
6298
499.6 IPS |
|
Object Detection (HP)
|
100% |
11505
912.5 IPS |
|
Object Detection (Q)
|
86% |
5390
433.0 IPS |
|
Face Detection (SP)
|
100% |
19915
236.6 IPS |
|
Face Detection (HP)
|
100% |
32430
385.3 IPS |
|
Face Detection (Q)
|
97% |
16635
198.3 IPS |
|
Depth Estimation (SP)
|
100% |
28279
217.9 IPS |
|
Depth Estimation (HP)
|
99% |
53557
412.6 IPS |
|
Depth Estimation (Q)
|
78% |
22228
177.6 IPS |
|
Style Transfer (SP)
|
100% |
100187
128.8 IPS |
|
Style Transfer (HP)
|
100% |
347711
447.0 IPS |
|
Style Transfer (Q)
|
98% |
85775
110.6 IPS |
|
Image Super-Resolution (SP)
|
100% |
16311
602.3 IPS |
|
Image Super-Resolution (HP)
|
100% |
29341
1.08 KIPS |
|
Image Super-Resolution (Q)
|
99% |
12544
464.5 IPS |
|
Text Classification (SP)
|
100% |
1522
2.03 KIPS |
|
Text Classification (HP)
|
100% |
2117
2.83 KIPS |
|
Text Classification (Q)
|
97% |
897
1.20 KIPS |
|
Machine Translation (SP)
|
100% |
3264
56.2 IPS |
|
Machine Translation (HP)
|
100% |
3371
58.1 IPS |
|
Machine Translation (Q)
|
70% |
1231
23.1 IPS |