User | danilonc |
Upload Date | June 27 2025 07:41 PM |
Views | 4 |
AI Information | |
---|---|
Framework | OpenVINO |
Backend | NPU |
Device | Intel(R) AI Boost |
System Information | |
---|---|
Operating System | Microsoft Windows 11 Enterprise (64-bit) |
Model | Microsoft Corporation Surface Laptop for Business 7th Edition with Intel |
Motherboard | Microsoft Corporation Surface Laptop for Business 7th Edition with Intel |
Power Plan | Balanced |
CPU Information | |
---|---|
Name | Intel(R) Core(TM) Ultra 7 268V |
Topology | 1 Processor, 8 Cores |
Identifier | GenuineIntel Family 6 Model 189 Stepping 1 |
Base Frequency | 2.20 GHz |
Cluster 1 | 4 Cores |
Cluster 2 | 4 Cores |
Memory Information | |
---|---|
Size | 32.00 GB |
Workload | Accuracy | Score | |
---|---|---|---|
Image Classification (SP)
|
100% |
1921
357.2 IPS |
|
Image Classification (HP)
|
100% |
10960
2.04 KIPS |
|
Image Classification (Q)
|
100% |
17017
3.16 KIPS |
|
Image Segmentation (SP)
|
100% |
2179
35.3 IPS |
|
Image Segmentation (HP)
|
100% |
14922
241.9 IPS |
|
Image Segmentation (Q)
|
99% |
27928
452.7 IPS |
|
Pose Estimation (SP)
|
100% |
3419
3.99 IPS |
|
Pose Estimation (HP)
|
100% |
103041
120.2 IPS |
|
Pose Estimation (Q)
|
96% |
204871
240.0 IPS |
|
Object Detection (SP)
|
100% |
1878
148.9 IPS |
|
Object Detection (HP)
|
100% |
15257
1.21 KIPS |
|
Object Detection (Q)
|
87% |
20354
1.63 KIPS |
|
Face Detection (SP)
|
100% |
5768
68.5 IPS |
|
Face Detection (HP)
|
100% |
26278
312.2 IPS |
|
Face Detection (Q)
|
100% |
57571
684.1 IPS |
|
Depth Estimation (SP)
|
100% |
4748
36.6 IPS |
|
Depth Estimation (HP)
|
99% |
68459
527.4 IPS |
|
Depth Estimation (Q)
|
88% |
110855
862.7 IPS |
|
Style Transfer (SP)
|
100% |
10326
13.3 IPS |
|
Style Transfer (HP)
|
100% |
207154
266.3 IPS |
|
Style Transfer (Q)
|
98% |
267409
344.8 IPS |
|
Image Super-Resolution (SP)
|
100% |
2157
79.6 IPS |
|
Image Super-Resolution (HP)
|
100% |
23685
874.6 IPS |
|
Image Super-Resolution (Q)
|
99% |
54025
2.00 KIPS |
|
Text Classification (SP)
|
100% |
2163
2.89 KIPS |
|
Text Classification (HP)
|
100% |
1899
2.54 KIPS |
|
Text Classification (Q)
|
92% |
2491
3.35 KIPS |
|
Machine Translation (SP)
|
100% |
3655
63.0 IPS |
|
Machine Translation (HP)
|
100% |
3790
65.3 IPS |
|
Machine Translation (Q)
|
100% |
3791
65.3 IPS |