| User | TechnoCat |
| Upload Date | June 26 2025 02:45 AM |
| Views | 7 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | CPU |
| Device | Intel(R) Core(TM) Ultra 9 285H |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | Micro-Star International Co., Ltd. Prestige 16 AI Evo B2HMG |
| Motherboard | Micro-Star International Co., Ltd. MS-15A1 |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 285H |
| Topology | 1 Processor, 16 Cores |
| Identifier | GenuineIntel Family 6 Model 197 Stepping 2 |
| Base Frequency | 2.90 GHz |
| Cluster 1 | 6 Cores |
| Cluster 2 | 10 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
4141
770.1 IPS |
|
|
Image Classification (HP)
|
100% |
4534
843.3 IPS |
|
|
Image Classification (Q)
|
100% |
10492
1.95 KIPS |
|
|
Image Segmentation (SP)
|
100% |
4804
77.9 IPS |
|
|
Image Segmentation (HP)
|
100% |
2594
42.0 IPS |
|
|
Image Segmentation (Q)
|
99% |
10273
166.5 IPS |
|
|
Pose Estimation (SP)
|
100% |
7203
8.40 IPS |
|
|
Pose Estimation (HP)
|
100% |
6740
7.86 IPS |
|
|
Pose Estimation (Q)
|
96% |
24088
28.2 IPS |
|
|
Object Detection (SP)
|
100% |
2663
211.2 IPS |
|
|
Object Detection (HP)
|
100% |
3213
254.9 IPS |
|
|
Object Detection (Q)
|
88% |
9144
733.0 IPS |
|
|
Face Detection (SP)
|
100% |
9250
109.9 IPS |
|
|
Face Detection (HP)
|
100% |
10237
121.6 IPS |
|
|
Face Detection (Q)
|
100% |
19514
231.9 IPS |
|
|
Depth Estimation (SP)
|
100% |
7460
57.5 IPS |
|
|
Depth Estimation (HP)
|
99% |
7688
59.2 IPS |
|
|
Depth Estimation (Q)
|
89% |
20485
159.3 IPS |
|
|
Style Transfer (SP)
|
100% |
18462
23.7 IPS |
|
|
Style Transfer (HP)
|
100% |
14738
18.9 IPS |
|
|
Style Transfer (Q)
|
98% |
61955
79.9 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
3263
120.5 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
3807
140.6 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
12354
457.5 IPS |
|
|
Text Classification (SP)
|
100% |
3724
4.97 KIPS |
|
|
Text Classification (HP)
|
100% |
3073
4.10 KIPS |
|
|
Text Classification (Q)
|
92% |
5512
7.41 KIPS |
|
|
Machine Translation (SP)
|
100% |
3651
62.9 IPS |
|
|
Machine Translation (HP)
|
100% |
4681
80.6 IPS |
|
|
Machine Translation (Q)
|
100% |
3441
59.3 IPS |