| User | TechnoCat |
| Upload Date | June 26 2025 02:40 AM |
| Views | 10 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | CPU |
| Device | Intel(R) Core(TM) Ultra 9 285H |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | Micro-Star International Co., Ltd. Prestige 16 AI Evo B2HMG |
| Motherboard | Micro-Star International Co., Ltd. MS-15A1 |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 285H |
| Topology | 1 Processor, 16 Cores |
| Identifier | GenuineIntel Family 6 Model 197 Stepping 2 |
| Base Frequency | 2.90 GHz |
| Cluster 1 | 6 Cores |
| Cluster 2 | 10 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
3139
583.8 IPS |
|
|
Image Classification (HP)
|
100% |
511
95.0 IPS |
|
|
Image Classification (Q)
|
99% |
5922
1.10 KIPS |
|
|
Image Segmentation (SP)
|
100% |
1654
26.8 IPS |
|
|
Image Segmentation (HP)
|
100% |
1045
16.9 IPS |
|
|
Image Segmentation (Q)
|
98% |
2970
48.3 IPS |
|
|
Pose Estimation (SP)
|
100% |
7220
8.42 IPS |
|
|
Pose Estimation (HP)
|
100% |
5116
5.97 IPS |
|
|
Pose Estimation (Q)
|
94% |
24780
29.1 IPS |
|
|
Object Detection (SP)
|
100% |
3031
240.4 IPS |
|
|
Object Detection (HP)
|
100% |
708
56.2 IPS |
|
|
Object Detection (Q)
|
86% |
7187
577.6 IPS |
|
|
Face Detection (SP)
|
100% |
8214
97.6 IPS |
|
|
Face Detection (HP)
|
100% |
1498
17.8 IPS |
|
|
Face Detection (Q)
|
97% |
8905
106.2 IPS |
|
|
Depth Estimation (SP)
|
100% |
8993
69.3 IPS |
|
|
Depth Estimation (HP)
|
99% |
2091
16.1 IPS |
|
|
Depth Estimation (Q)
|
78% |
14945
119.3 IPS |
|
|
Style Transfer (SP)
|
100% |
17070
21.9 IPS |
|
|
Style Transfer (HP)
|
100% |
12105
15.6 IPS |
|
|
Style Transfer (Q)
|
98% |
23371
30.1 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
3178
117.4 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
2201
81.3 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
4498
166.5 IPS |
|
|
Text Classification (SP)
|
100% |
1509
2.01 KIPS |
|
|
Text Classification (HP)
|
100% |
716
955.8 IPS |
|
|
Text Classification (Q)
|
97% |
1485
1.99 KIPS |
|
|
Machine Translation (SP)
|
100% |
2146
37.0 IPS |
|
|
Machine Translation (HP)
|
100% |
791
13.6 IPS |
|
|
Machine Translation (Q)
|
65% |
3447
69.3 IPS |