| User | danm1988 |
| Upload Date | June 22 2025 09:07 PM |
| Views | 11 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | NPU |
| Device | Intel(R) AI Boost |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro for Workstations (64-bit) |
| Model | Micro-Star International Co., Ltd. Prestige 16 AI+ Evo B2VMG |
| Motherboard | Micro-Star International Co., Ltd. MS-15A3 |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 288V |
| Topology | 1 Processor, 8 Cores |
| Identifier | GenuineIntel Family 6 Model 189 Stepping 1 |
| Base Frequency | 3.30 GHz |
| Cluster 1 | 4 Cores |
| Cluster 2 | 4 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
1808
336.3 IPS |
|
|
Image Classification (HP)
|
100% |
13854
2.58 KIPS |
|
|
Image Classification (Q)
|
100% |
20213
3.76 KIPS |
|
|
Image Segmentation (SP)
|
100% |
2077
33.7 IPS |
|
|
Image Segmentation (HP)
|
100% |
19917
322.9 IPS |
|
|
Image Segmentation (Q)
|
99% |
33224
538.6 IPS |
|
|
Pose Estimation (SP)
|
100% |
3345
3.90 IPS |
|
|
Pose Estimation (HP)
|
100% |
112769
131.6 IPS |
|
|
Pose Estimation (Q)
|
96% |
228758
268.0 IPS |
|
|
Object Detection (SP)
|
100% |
1731
137.3 IPS |
|
|
Object Detection (HP)
|
100% |
17554
1.39 KIPS |
|
|
Object Detection (Q)
|
87% |
25665
2.06 KIPS |
|
|
Face Detection (SP)
|
100% |
5452
64.8 IPS |
|
|
Face Detection (HP)
|
100% |
41706
495.6 IPS |
|
|
Face Detection (Q)
|
100% |
84910
1.01 KIPS |
|
|
Depth Estimation (SP)
|
100% |
4595
35.4 IPS |
|
|
Depth Estimation (HP)
|
93% |
74046
573.6 IPS |
|
|
Depth Estimation (Q)
|
88% |
148774
1.16 KIPS |
|
|
Style Transfer (SP)
|
100% |
9461
12.2 IPS |
|
|
Style Transfer (HP)
|
100% |
220180
283.0 IPS |
|
|
Style Transfer (Q)
|
98% |
390588
503.7 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
2079
76.8 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
36938
1.36 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
64694
2.40 KIPS |
|
|
Text Classification (SP)
|
100% |
2106
2.81 KIPS |
|
|
Text Classification (HP)
|
100% |
2947
3.93 KIPS |
|
|
Text Classification (Q)
|
92% |
2627
3.53 KIPS |
|
|
Machine Translation (SP)
|
100% |
3407
58.7 IPS |
|
|
Machine Translation (HP)
|
100% |
4542
78.2 IPS |
|
|
Machine Translation (Q)
|
100% |
4562
78.6 IPS |