| User | mnin |
| Upload Date | June 19 2025 10:06 PM |
| Views | 8 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 5090 |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | ASUS System Product Name |
| Motherboard | ASUSTeK COMPUTER INC. ROG MAXIMUS Z890 HERO |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 285K |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 3.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 96.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
16056
2.99 KIPS |
|
|
Image Classification (HP)
|
100% |
20773
3.86 KIPS |
|
|
Image Classification (Q)
|
100% |
13379
2.49 KIPS |
|
|
Image Segmentation (SP)
|
100% |
32762
531.1 IPS |
|
|
Image Segmentation (HP)
|
100% |
40692
659.6 IPS |
|
|
Image Segmentation (Q)
|
98% |
29908
486.3 IPS |
|
|
Pose Estimation (SP)
|
100% |
384586
448.7 IPS |
|
|
Pose Estimation (HP)
|
100% |
882507
1.03 KIPS |
|
|
Pose Estimation (Q)
|
96% |
307718
360.4 IPS |
|
|
Object Detection (SP)
|
100% |
22112
1.75 KIPS |
|
|
Object Detection (HP)
|
100% |
27971
2.22 KIPS |
|
|
Object Detection (Q)
|
85% |
18536
1.49 KIPS |
|
|
Face Detection (SP)
|
100% |
62866
747.0 IPS |
|
|
Face Detection (HP)
|
100% |
83315
990.0 IPS |
|
|
Face Detection (Q)
|
97% |
51745
617.0 IPS |
|
|
Depth Estimation (SP)
|
100% |
100353
773.2 IPS |
|
|
Depth Estimation (HP)
|
99% |
181717
1.40 KIPS |
|
|
Depth Estimation (Q)
|
77% |
71757
574.7 IPS |
|
|
Style Transfer (SP)
|
100% |
565354
726.8 IPS |
|
|
Style Transfer (HP)
|
100% |
1553250
2.00 KIPS |
|
|
Style Transfer (Q)
|
98% |
477494
615.7 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
68909
2.54 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
93060
3.44 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
48610
1.80 KIPS |
|
|
Text Classification (SP)
|
100% |
4152
5.54 KIPS |
|
|
Text Classification (HP)
|
100% |
5116
6.83 KIPS |
|
|
Text Classification (Q)
|
97% |
2290
3.07 KIPS |
|
|
Machine Translation (SP)
|
100% |
6822
117.5 IPS |
|
|
Machine Translation (HP)
|
100% |
6801
117.1 IPS |
|
|
Machine Translation (Q)
|
70% |
3004
56.3 IPS |