| User | danm1988 |
| Upload Date | June 13 2025 07:26 PM |
| Views | 15 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | GPU |
| Device | Intel(R) Arc(TM) Graphics (iGPU) |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro for Workstations (64-bit) |
| Model | Micro-Star International Co., Ltd. Prestige 16 AI+ Evo B2VMG |
| Motherboard | Micro-Star International Co., Ltd. MS-15A3 |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 288V |
| Topology | 1 Processor, 8 Cores |
| Identifier | GenuineIntel Family 6 Model 189 Stepping 1 |
| Base Frequency | 3.30 GHz |
| Cluster 1 | 4 Cores |
| Cluster 2 | 4 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
7438
1.38 KIPS |
|
|
Image Classification (HP)
|
100% |
14833
2.76 KIPS |
|
|
Image Classification (Q)
|
100% |
16901
3.14 KIPS |
|
|
Image Segmentation (SP)
|
100% |
9712
157.4 IPS |
|
|
Image Segmentation (HP)
|
100% |
25026
405.7 IPS |
|
|
Image Segmentation (Q)
|
99% |
30331
491.7 IPS |
|
|
Pose Estimation (SP)
|
100% |
23578
27.5 IPS |
|
|
Pose Estimation (HP)
|
100% |
128531
150.0 IPS |
|
|
Pose Estimation (Q)
|
97% |
254377
297.8 IPS |
|
|
Object Detection (SP)
|
100% |
5749
456.0 IPS |
|
|
Object Detection (HP)
|
100% |
14377
1.14 KIPS |
|
|
Object Detection (Q)
|
88% |
15268
1.22 KIPS |
|
|
Face Detection (SP)
|
100% |
11750
139.6 IPS |
|
|
Face Detection (HP)
|
100% |
25355
301.3 IPS |
|
|
Face Detection (Q)
|
100% |
31393
373.0 IPS |
|
|
Depth Estimation (SP)
|
100% |
21202
163.3 IPS |
|
|
Depth Estimation (HP)
|
99% |
53804
414.5 IPS |
|
|
Depth Estimation (Q)
|
89% |
66201
514.8 IPS |
|
|
Style Transfer (SP)
|
100% |
53325
68.5 IPS |
|
|
Style Transfer (HP)
|
100% |
154837
199.0 IPS |
|
|
Style Transfer (Q)
|
98% |
174994
225.7 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
9113
336.5 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
24981
922.4 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
28139
1.04 KIPS |
|
|
Text Classification (SP)
|
100% |
3708
4.95 KIPS |
|
|
Text Classification (HP)
|
100% |
4501
6.01 KIPS |
|
|
Text Classification (Q)
|
92% |
2938
3.95 KIPS |
|
|
Machine Translation (SP)
|
100% |
2913
50.2 IPS |
|
|
Machine Translation (HP)
|
100% |
5222
89.9 IPS |
|
|
Machine Translation (Q)
|
100% |
5388
92.8 IPS |