| User | Advanture2go |
| Upload Date | June 09 2025 09:21 AM |
| Views | 7 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 3080 Ti Laptop GPU |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | GIGABYTE AERO 16 YE5 |
| Motherboard | GIGABYTE AERO 16 YE5 |
| Power Plan | Ausbalanciert |
| CPU Information | |
|---|---|
| Name | Intel Core i9-12900H |
| Topology | 1 Processor, 14 Cores, 20 Threads |
| Identifier | GenuineIntel Family 6 Model 154 Stepping 3 |
| Base Frequency | 2.50 GHz |
| Cluster 1 | 6 Cores |
| Cluster 2 | 8 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
5502
1.02 KIPS |
|
|
Image Classification (HP)
|
99% |
8576
1.60 KIPS |
|
|
Image Classification (Q)
|
100% |
4268
793.8 IPS |
|
|
Image Segmentation (SP)
|
100% |
9012
146.1 IPS |
|
|
Image Segmentation (HP)
|
100% |
12168
197.3 IPS |
|
|
Image Segmentation (Q)
|
98% |
8046
130.8 IPS |
|
|
Pose Estimation (SP)
|
100% |
74295
86.7 IPS |
|
|
Pose Estimation (HP)
|
100% |
218797
255.3 IPS |
|
|
Pose Estimation (Q)
|
96% |
65295
76.5 IPS |
|
|
Object Detection (SP)
|
100% |
7803
618.9 IPS |
|
|
Object Detection (HP)
|
100% |
11332
898.8 IPS |
|
|
Object Detection (Q)
|
85% |
5963
480.1 IPS |
|
|
Face Detection (SP)
|
100% |
19809
235.4 IPS |
|
|
Face Detection (HP)
|
100% |
28828
342.5 IPS |
|
|
Face Detection (Q)
|
97% |
14868
177.3 IPS |
|
|
Depth Estimation (SP)
|
100% |
40630
313.0 IPS |
|
|
Depth Estimation (HP)
|
99% |
73624
567.2 IPS |
|
|
Depth Estimation (Q)
|
77% |
27051
216.6 IPS |
|
|
Style Transfer (SP)
|
100% |
160512
206.3 IPS |
|
|
Style Transfer (HP)
|
100% |
372834
479.3 IPS |
|
|
Style Transfer (Q)
|
98% |
119620
154.2 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
24128
890.9 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
33361
1.23 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
14116
522.7 IPS |
|
|
Text Classification (SP)
|
100% |
1992
2.66 KIPS |
|
|
Text Classification (HP)
|
99% |
1954
2.61 KIPS |
|
|
Text Classification (Q)
|
97% |
844
1.13 KIPS |
|
|
Machine Translation (SP)
|
100% |
3022
52.1 IPS |
|
|
Machine Translation (HP)
|
100% |
3273
56.4 IPS |
|
|
Machine Translation (Q)
|
70% |
1287
24.1 IPS |