| User | danm1988 |
| Upload Date | June 08 2025 12:37 PM |
| Views | 18 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | GPU |
| Device | Intel(R) Arc(TM) Graphics (iGPU) |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro for Workstations (64-bit) |
| Model | Micro-Star International Co., Ltd. Prestige 16 AI+ Evo B2VMG |
| Motherboard | Micro-Star International Co., Ltd. MS-15A3 |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 288V |
| Topology | 1 Processor, 8 Cores |
| Identifier | GenuineIntel Family 6 Model 189 Stepping 1 |
| Base Frequency | 3.30 GHz |
| Cluster 1 | 4 Cores |
| Cluster 2 | 4 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
7084
1.32 KIPS |
|
|
Image Classification (HP)
|
100% |
14324
2.66 KIPS |
|
|
Image Classification (Q)
|
100% |
17396
3.24 KIPS |
|
|
Image Segmentation (SP)
|
100% |
9959
161.4 IPS |
|
|
Image Segmentation (HP)
|
100% |
25472
412.9 IPS |
|
|
Image Segmentation (Q)
|
99% |
30710
497.8 IPS |
|
|
Pose Estimation (SP)
|
100% |
23678
27.6 IPS |
|
|
Pose Estimation (HP)
|
100% |
140522
164.0 IPS |
|
|
Pose Estimation (Q)
|
97% |
268374
314.2 IPS |
|
|
Object Detection (SP)
|
100% |
6738
534.5 IPS |
|
|
Object Detection (HP)
|
100% |
16541
1.31 KIPS |
|
|
Object Detection (Q)
|
88% |
16095
1.29 KIPS |
|
|
Face Detection (SP)
|
100% |
13205
156.9 IPS |
|
|
Face Detection (HP)
|
100% |
27599
327.9 IPS |
|
|
Face Detection (Q)
|
100% |
35239
418.7 IPS |
|
|
Depth Estimation (SP)
|
100% |
24899
191.8 IPS |
|
|
Depth Estimation (HP)
|
99% |
60666
467.4 IPS |
|
|
Depth Estimation (Q)
|
89% |
68322
531.3 IPS |
|
|
Style Transfer (SP)
|
100% |
54890
70.6 IPS |
|
|
Style Transfer (HP)
|
100% |
160398
206.2 IPS |
|
|
Style Transfer (Q)
|
98% |
180573
232.9 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
9715
358.7 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
29096
1.07 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
30167
1.12 KIPS |
|
|
Text Classification (SP)
|
100% |
4242
5.66 KIPS |
|
|
Text Classification (HP)
|
100% |
5175
6.91 KIPS |
|
|
Text Classification (Q)
|
92% |
3293
4.42 KIPS |
|
|
Machine Translation (SP)
|
100% |
3135
54.0 IPS |
|
|
Machine Translation (HP)
|
100% |
5292
91.2 IPS |
|
|
Machine Translation (Q)
|
100% |
5135
88.5 IPS |