Upload Date | May 14 2025 01:08 AM |
Views | 5 |
AI Information | |
---|---|
Framework | ONNX |
Backend | DirectML |
Device | NVIDIA GeForce RTX 5070 Ti Laptop GPU |
System Information | |
---|---|
Operating System | Microsoft Windows 11 Pro (64-bit) |
Model | Micro-Star International Co., Ltd. Vector 16 HX AI A2XWHG |
Motherboard | Micro-Star International Co., Ltd. MS-15M3 |
CPU Information | |
---|---|
Name | Intel(R) Core(TM) Ultra 9 275HX |
Topology | 1 Processor, 24 Cores |
Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
Base Frequency | 2.70 GHz |
Cluster 1 | 8 Cores |
Cluster 2 | 16 Cores |
Memory Information | |
---|---|
Size | 16.00 GB |
Workload | Accuracy | Score | |
---|---|---|---|
Image Classification (SP)
|
100% |
10065
1.87 KIPS |
|
Image Classification (HP)
|
100% |
17070
3.17 KIPS |
|
Image Classification (Q)
|
100% |
9070
1.69 KIPS |
|
Image Segmentation (SP)
|
100% |
19062
309.0 IPS |
|
Image Segmentation (HP)
|
100% |
28143
456.2 IPS |
|
Image Segmentation (Q)
|
98% |
17522
284.9 IPS |
|
Pose Estimation (SP)
|
100% |
125334
146.2 IPS |
|
Pose Estimation (HP)
|
100% |
424410
495.2 IPS |
|
Pose Estimation (Q)
|
96% |
112321
131.6 IPS |
|
Object Detection (SP)
|
100% |
13339
1.06 KIPS |
|
Object Detection (HP)
|
100% |
21635
1.72 KIPS |
|
Object Detection (Q)
|
83% |
10984
887.4 IPS |
|
Face Detection (SP)
|
100% |
35855
426.0 IPS |
|
Face Detection (HP)
|
100% |
53490
635.6 IPS |
|
Face Detection (Q)
|
97% |
30724
366.3 IPS |
|
Depth Estimation (SP)
|
100% |
62606
482.3 IPS |
|
Depth Estimation (HP)
|
99% |
116421
897.0 IPS |
|
Depth Estimation (Q)
|
78% |
49965
398.8 IPS |
|
Style Transfer (SP)
|
100% |
206904
266.0 IPS |
|
Style Transfer (HP)
|
100% |
683609
878.8 IPS |
|
Style Transfer (Q)
|
98% |
177691
229.1 IPS |
|
Image Super-Resolution (SP)
|
100% |
35468
1.31 KIPS |
|
Image Super-Resolution (HP)
|
100% |
66622
2.46 KIPS |
|
Image Super-Resolution (Q)
|
99% |
27119
1.00 KIPS |
|
Text Classification (SP)
|
100% |
3308
4.42 KIPS |
|
Text Classification (HP)
|
100% |
4126
5.51 KIPS |
|
Text Classification (Q)
|
97% |
2077
2.78 KIPS |
|
Machine Translation (SP)
|
100% |
5362
92.4 IPS |
|
Machine Translation (HP)
|
100% |
5940
102.3 IPS |
|
Machine Translation (Q)
|
70% |
2335
43.8 IPS |