Upload Date | May 10 2025 03:25 AM |
Views | 3 |
AI Information | |
---|---|
Framework | TensorFlow Lite |
Backend | GPU |
Device | Qualcomm ARMv8 |
System Information | |
---|---|
Operating System | Android 15 |
Model | OPPO PKJ110 |
Model ID | OPPO PKJ110 |
Motherboard | sun |
Governor | walt |
CPU Information | |
---|---|
Name | Qualcomm ARMv8 |
Topology | 1 Processor, 8 Cores |
Identifier | ARM implementer 81 architecture 8 variant 3 part 1 revision 4 |
Base Frequency | 3.53 GHz |
Cluster 1 | 6 Cores @ 3.53 GHz |
Cluster 2 | 2 Cores @ 4.32 GHz |
Memory Information | |
---|---|
Size | 10.85 GB |
Workload | Accuracy | Score | |
---|---|---|---|
Image Classification (SP)
|
100% |
703
130.7 IPS |
|
Image Classification (HP)
|
100% |
1051
195.4 IPS |
|
Image Classification (Q)
|
99% |
1284
239.5 IPS |
|
Image Segmentation (SP)
|
100% |
1477
23.9 IPS |
|
Image Segmentation (HP)
|
100% |
1988
32.2 IPS |
|
Image Segmentation (Q)
|
98% |
2765
45.0 IPS |
|
Pose Estimation (SP)
|
100% |
1619
1.89 IPS |
|
Pose Estimation (HP)
|
100% |
2775
3.24 IPS |
|
Pose Estimation (Q)
|
96% |
2781
3.26 IPS |
|
Object Detection (SP)
|
100% |
540
42.8 IPS |
|
Object Detection (HP)
|
100% |
1179
93.6 IPS |
|
Object Detection (Q)
|
86% |
1311
105.3 IPS |
|
Face Detection (SP)
|
100% |
2957
35.1 IPS |
|
Face Detection (HP)
|
100% |
4535
53.9 IPS |
|
Face Detection (Q)
|
97% |
5058
60.3 IPS |
|
Depth Estimation (SP)
|
100% |
1577
12.1 IPS |
|
Depth Estimation (HP)
|
99% |
4615
35.7 IPS |
|
Depth Estimation (Q)
|
63% |
3799
35.3 IPS |
|
Style Transfer (SP)
|
100% |
5808
7.47 IPS |
|
Style Transfer (HP)
|
100% |
12437
16.0 IPS |
|
Style Transfer (Q)
|
98% |
12261
15.8 IPS |
|
Image Super-Resolution (SP)
|
100% |
651
24.0 IPS |
|
Image Super-Resolution (HP)
|
100% |
2165
79.9 IPS |
|
Image Super-Resolution (Q)
|
97% |
2109
78.1 IPS |
|
Text Classification (SP)
|
100% |
231
308.7 IPS |
|
Text Classification (HP)
|
100% |
232
309.3 IPS |
|
Text Classification (Q)
|
91% |
383
515.4 IPS |
|
Machine Translation (SP)
|
100% |
406
6.99 IPS |
|
Machine Translation (HP)
|
100% |
412
7.10 IPS |
|
Machine Translation (Q)
|
57% |
324
7.92 IPS |