| User | punkouter25 |
| Upload Date | May 06 2025 05:02 PM |
| Views | 7 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | CPU |
| Device | Intel(R) Core(TM) Ultra 9 275HX |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | Micro-Star International Co., Ltd. Vector 16 HX AI A2XWHG |
| Motherboard | Micro-Star International Co., Ltd. MS-15M3 |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 275HX |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 2.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
4387
815.8 IPS |
|
|
Image Classification (HP)
|
100% |
683
127.0 IPS |
|
|
Image Classification (Q)
|
99% |
8306
1.55 KIPS |
|
|
Image Segmentation (SP)
|
100% |
2155
34.9 IPS |
|
|
Image Segmentation (HP)
|
100% |
1299
21.1 IPS |
|
|
Image Segmentation (Q)
|
98% |
4335
70.5 IPS |
|
|
Pose Estimation (SP)
|
100% |
11605
13.5 IPS |
|
|
Pose Estimation (HP)
|
100% |
6247
7.29 IPS |
|
|
Pose Estimation (Q)
|
94% |
38430
45.1 IPS |
|
|
Object Detection (SP)
|
100% |
4217
334.5 IPS |
|
|
Object Detection (HP)
|
100% |
875
69.4 IPS |
|
|
Object Detection (Q)
|
86% |
9809
788.3 IPS |
|
|
Face Detection (SP)
|
100% |
11339
134.7 IPS |
|
|
Face Detection (HP)
|
100% |
2188
26.0 IPS |
|
|
Face Detection (Q)
|
97% |
11203
133.6 IPS |
|
|
Depth Estimation (SP)
|
100% |
12527
96.5 IPS |
|
|
Depth Estimation (HP)
|
99% |
2953
22.7 IPS |
|
|
Depth Estimation (Q)
|
78% |
20571
164.2 IPS |
|
|
Style Transfer (SP)
|
100% |
25552
32.8 IPS |
|
|
Style Transfer (HP)
|
100% |
15823
20.3 IPS |
|
|
Style Transfer (Q)
|
98% |
28347
36.6 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
3624
133.8 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
2533
93.5 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
5083
188.2 IPS |
|
|
Text Classification (SP)
|
100% |
1697
2.27 KIPS |
|
|
Text Classification (HP)
|
100% |
851
1.14 KIPS |
|
|
Text Classification (Q)
|
97% |
1619
2.17 KIPS |
|
|
Machine Translation (SP)
|
100% |
2756
47.5 IPS |
|
|
Machine Translation (HP)
|
100% |
996
17.1 IPS |
|
|
Machine Translation (Q)
|
65% |
3917
78.7 IPS |