| User | ipv4-army |
| Upload Date | May 04 2025 04:20 PM |
| Views | 7 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 3060 |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 IoT Enterprise LTSC (64-bit) |
| Model | LENOVO 90UT0000US |
| Motherboard | LENOVO 3769 |
| Power Plan | High performance |
| CPU Information | |
|---|---|
| Name | Intel Core i7-13700F |
| Topology | 1 Processor, 16 Cores, 24 Threads |
| Identifier | GenuineIntel Family 6 Model 183 Stepping 1 |
| Base Frequency | 2.10 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 8 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
6311
1.17 KIPS |
|
|
Image Classification (HP)
|
99% |
10612
1.98 KIPS |
|
|
Image Classification (Q)
|
99% |
4707
877.9 IPS |
|
|
Image Segmentation (SP)
|
100% |
9792
158.7 IPS |
|
|
Image Segmentation (HP)
|
100% |
15718
254.8 IPS |
|
|
Image Segmentation (Q)
|
98% |
7932
129.0 IPS |
|
|
Pose Estimation (SP)
|
100% |
69533
81.1 IPS |
|
|
Pose Estimation (HP)
|
100% |
195403
228.0 IPS |
|
|
Pose Estimation (Q)
|
96% |
57417
67.3 IPS |
|
|
Object Detection (SP)
|
100% |
7505
595.3 IPS |
|
|
Object Detection (HP)
|
100% |
13181
1.05 KIPS |
|
|
Object Detection (Q)
|
84% |
5772
465.5 IPS |
|
|
Face Detection (SP)
|
100% |
17495
207.9 IPS |
|
|
Face Detection (HP)
|
100% |
28364
337.0 IPS |
|
|
Face Detection (Q)
|
97% |
13641
162.7 IPS |
|
|
Depth Estimation (SP)
|
100% |
34658
267.0 IPS |
|
|
Depth Estimation (HP)
|
99% |
65677
507.4 IPS |
|
|
Depth Estimation (Q)
|
77% |
24105
193.0 IPS |
|
|
Style Transfer (SP)
|
100% |
117021
150.4 IPS |
|
|
Style Transfer (HP)
|
100% |
296139
380.7 IPS |
|
|
Style Transfer (Q)
|
98% |
94109
121.4 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
21606
797.8 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
36326
1.34 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
13693
507.0 IPS |
|
|
Text Classification (SP)
|
100% |
2452
3.27 KIPS |
|
|
Text Classification (HP)
|
99% |
3395
4.53 KIPS |
|
|
Text Classification (Q)
|
97% |
1281
1.72 KIPS |
|
|
Machine Translation (SP)
|
100% |
3728
64.2 IPS |
|
|
Machine Translation (HP)
|
100% |
3814
65.7 IPS |
|
|
Machine Translation (Q)
|
70% |
1440
27.0 IPS |