| User | NienorGT |
| Upload Date | May 01 2025 02:54 AM |
| Views | 10 |
| AI Information | |
|---|---|
| Framework | TensorFlow Lite |
| Backend | QNN |
| Device | Qualcomm Snapdragon 8 Gen 3 |
| System Information | |
|---|---|
| Operating System | Android 15 |
| Model | Samsung Galaxy S24 Ultra |
| Model ID | samsung SM-S928W |
| Motherboard | pineapple |
| Governor | walt |
| CPU Information | |
|---|---|
| Name | ARM ARMv8 |
| Topology | 1 Processor, 8 Cores |
| Identifier | ARM implementer 65 architecture 8 variant 0 part 3458 revision 1 |
| Base Frequency | 2.26 GHz |
| Cluster 1 | 2 Cores @ 2.27 GHz |
| Cluster 2 | 2 Cores @ 2.96 GHz |
| Cluster 3 | 3 Cores @ 3.15 GHz |
| Cluster 4 | 1 Core @ 3.40 GHz |
| Memory Information | |
|---|---|
| Size | 10.83 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
332
61.8 IPS |
|
|
Image Classification (HP)
|
100% |
18241
3.39 KIPS |
|
|
Image Classification (Q)
|
97% |
41919
7.82 KIPS |
|
|
Image Segmentation (SP)
|
100% |
415
6.72 IPS |
|
|
Image Segmentation (HP)
|
100% |
11042
179.0 IPS |
|
|
Image Segmentation (Q)
|
98% |
31626
514.3 IPS |
|
|
Pose Estimation (SP)
|
100% |
557
0.65 IPS |
|
|
Pose Estimation (HP)
|
100% |
100656
117.4 IPS |
|
|
Pose Estimation (Q)
|
98% |
399014
467.0 IPS |
|
|
Object Detection (SP)
|
100% |
304
24.1 IPS |
|
|
Object Detection (HP)
|
100% |
16522
1.31 KIPS |
|
|
Object Detection (Q)
|
86% |
20525
1.65 KIPS |
|
|
Face Detection (SP)
|
100% |
765
9.09 IPS |
|
|
Face Detection (HP)
|
100% |
35547
422.4 IPS |
|
|
Face Detection (Q)
|
97% |
129108
1.54 KIPS |
|
|
Depth Estimation (SP)
|
100% |
683
5.26 IPS |
|
|
Depth Estimation (HP)
|
99% |
64725
498.7 IPS |
|
|
Depth Estimation (Q)
|
63% |
118081
1.11 KIPS |
|
|
Style Transfer (SP)
|
100% |
1061
1.36 IPS |
|
|
Style Transfer (HP)
|
98% |
85596
110.4 IPS |
|
|
Style Transfer (Q)
|
98% |
422472
544.8 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
357
13.2 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
46142
1.70 KIPS |
|
|
Image Super-Resolution (Q)
|
97% |
103652
3.84 KIPS |
|
|
Text Classification (SP)
|
100% |
449
599.4 IPS |
|
|
Text Classification (HP)
|
100% |
3110
4.15 KIPS |
|
|
Text Classification (Q)
|
93% |
6859
9.21 KIPS |
|
|
Machine Translation (SP)
|
100% |
727
12.5 IPS |
|
|
Machine Translation (HP)
|
100% |
3776
65.0 IPS |
|
|
Machine Translation (Q)
|
55% |
2671
70.0 IPS |