| User | frank_m_h_jaeger |
| Upload Date | August 18 2024 11:46 AM |
| Views | 13 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | AMD Radeon RX 6600 |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Home (64-bit) |
| Model | Micro-Star International Co., Ltd. MS-7C88 |
| Motherboard | Micro-Star International Co., Ltd. B460M-A PRO (MS-7C88) |
| Power Plan | Ausbalanciert |
| CPU Information | |
|---|---|
| Name | Intel Core i9-10900 |
| Topology | 1 Processor, 10 Cores, 20 Threads |
| Identifier | GenuineIntel Family 6 Model 165 Stepping 5 |
| Base Frequency | 2.81 GHz |
| Cluster 1 | 10 Cores |
| Memory Information | |
|---|---|
| Size | 16.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
5822
1.08 KIPS |
|
|
Image Classification (HP)
|
100% |
5494
1.02 KIPS |
|
|
Image Classification (Q)
|
100% |
4873
906.2 IPS |
|
|
Image Segmentation (SP)
|
100% |
7487
121.4 IPS |
|
|
Image Segmentation (HP)
|
100% |
6264
101.5 IPS |
|
|
Image Segmentation (Q)
|
98% |
6755
109.8 IPS |
|
|
Pose Estimation (SP)
|
100% |
71185
83.1 IPS |
|
|
Pose Estimation (HP)
|
100% |
117868
137.5 IPS |
|
|
Pose Estimation (Q)
|
96% |
61135
71.6 IPS |
|
|
Object Detection (SP)
|
100% |
4806
381.2 IPS |
|
|
Object Detection (HP)
|
100% |
5831
462.5 IPS |
|
|
Object Detection (Q)
|
89% |
4154
332.5 IPS |
|
|
Face Detection (SP)
|
100% |
14306
170.0 IPS |
|
|
Face Detection (HP)
|
100% |
17067
202.8 IPS |
|
|
Face Detection (Q)
|
97% |
11055
131.8 IPS |
|
|
Depth Estimation (SP)
|
100% |
34048
262.3 IPS |
|
|
Depth Estimation (HP)
|
99% |
40437
311.5 IPS |
|
|
Depth Estimation (Q)
|
73% |
25308
206.6 IPS |
|
|
Style Transfer (SP)
|
100% |
139878
179.8 IPS |
|
|
Style Transfer (HP)
|
100% |
182138
234.1 IPS |
|
|
Style Transfer (Q)
|
98% |
117237
151.2 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
23276
859.5 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
28180
1.04 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
17039
630.9 IPS |
|
|
Text Classification (SP)
|
100% |
2280
3.04 KIPS |
|
|
Text Classification (HP)
|
100% |
2392
3.19 KIPS |
|
|
Text Classification (Q)
|
97% |
1580
2.12 KIPS |
|
|
Machine Translation (SP)
|
100% |
1989
34.3 IPS |
|
|
Machine Translation (HP)
|
100% |
1753
30.2 IPS |
|
|
Machine Translation (Q)
|
60% |
1295
28.9 IPS |