| User | frank_m_h_jaeger |
| Upload Date | August 18 2024 11:39 AM |
| Views | 12 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | CPU |
| Device | Intel(R) Core(TM) i9-10900 CPU @ 2.80GHz |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Home (64-bit) |
| Model | Micro-Star International Co., Ltd. MS-7C88 |
| Motherboard | Micro-Star International Co., Ltd. B460M-A PRO (MS-7C88) |
| Power Plan | Ausbalanciert |
| CPU Information | |
|---|---|
| Name | Intel Core i9-10900 |
| Topology | 1 Processor, 10 Cores, 20 Threads |
| Identifier | GenuineIntel Family 6 Model 165 Stepping 5 |
| Base Frequency | 2.81 GHz |
| Cluster 1 | 10 Cores |
| Memory Information | |
|---|---|
| Size | 16.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
2247
417.8 IPS |
|
|
Image Classification (HP)
|
100% |
2238
416.3 IPS |
|
|
Image Classification (Q)
|
100% |
3458
643.0 IPS |
|
|
Image Segmentation (SP)
|
100% |
2465
40.0 IPS |
|
|
Image Segmentation (HP)
|
100% |
2746
44.5 IPS |
|
|
Image Segmentation (Q)
|
99% |
3670
59.7 IPS |
|
|
Pose Estimation (SP)
|
100% |
5803
6.77 IPS |
|
|
Pose Estimation (HP)
|
100% |
5121
5.98 IPS |
|
|
Pose Estimation (Q)
|
94% |
9908
11.6 IPS |
|
|
Object Detection (SP)
|
100% |
2435
193.2 IPS |
|
|
Object Detection (HP)
|
100% |
2382
188.9 IPS |
|
|
Object Detection (Q)
|
87% |
3978
319.1 IPS |
|
|
Face Detection (SP)
|
100% |
4690
55.7 IPS |
|
|
Face Detection (HP)
|
100% |
5395
64.1 IPS |
|
|
Face Detection (Q)
|
97% |
14124
168.4 IPS |
|
|
Depth Estimation (SP)
|
100% |
8453
65.1 IPS |
|
|
Depth Estimation (HP)
|
100% |
6744
52.0 IPS |
|
|
Depth Estimation (Q)
|
79% |
13254
105.1 IPS |
|
|
Style Transfer (SP)
|
100% |
19821
25.5 IPS |
|
|
Style Transfer (HP)
|
100% |
16333
21.0 IPS |
|
|
Style Transfer (Q)
|
98% |
29348
37.8 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
3560
131.5 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
3550
131.1 IPS |
|
|
Image Super-Resolution (Q)
|
98% |
7727
286.2 IPS |
|
|
Text Classification (SP)
|
100% |
876
1.17 KIPS |
|
|
Text Classification (HP)
|
100% |
891
1.19 KIPS |
|
|
Text Classification (Q)
|
91% |
667
896.4 IPS |
|
|
Machine Translation (SP)
|
100% |
2985
51.4 IPS |
|
|
Machine Translation (HP)
|
100% |
3020
52.0 IPS |
|
|
Machine Translation (Q)
|
90% |
2281
39.6 IPS |