| Upload Date | March 27 2025 02:53 PM |
| Views | 25 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 5080 Laptop GPU |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Home Single Language (64-bit) |
| Model | Micro-Star International Co., Ltd. Vector 16 HX AI A2XWIG |
| Motherboard | Micro-Star International Co., Ltd. MS-15M3 |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 275HX |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 2.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 16.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
10192
1.90 KIPS |
|
|
Image Classification (HP)
|
100% |
16261
3.02 KIPS |
|
|
Image Classification (Q)
|
100% |
9041
1.68 KIPS |
|
|
Image Segmentation (SP)
|
100% |
17336
281.0 IPS |
|
|
Image Segmentation (HP)
|
100% |
23343
378.4 IPS |
|
|
Image Segmentation (Q)
|
98% |
15760
256.3 IPS |
|
|
Pose Estimation (SP)
|
100% |
154876
180.7 IPS |
|
|
Pose Estimation (HP)
|
100% |
414656
483.8 IPS |
|
|
Pose Estimation (Q)
|
94% |
134037
157.2 IPS |
|
|
Object Detection (SP)
|
100% |
13038
1.03 KIPS |
|
|
Object Detection (HP)
|
100% |
21445
1.70 KIPS |
|
|
Object Detection (Q)
|
89% |
11349
908.7 IPS |
|
|
Face Detection (SP)
|
100% |
33436
397.3 IPS |
|
|
Face Detection (HP)
|
100% |
46322
550.4 IPS |
|
|
Face Detection (Q)
|
97% |
28439
339.1 IPS |
|
|
Depth Estimation (SP)
|
100% |
68071
524.4 IPS |
|
|
Depth Estimation (HP)
|
99% |
115425
889.3 IPS |
|
|
Depth Estimation (Q)
|
75% |
52089
421.6 IPS |
|
|
Style Transfer (SP)
|
100% |
248270
319.2 IPS |
|
|
Style Transfer (HP)
|
100% |
795219
1.02 KIPS |
|
|
Style Transfer (Q)
|
98% |
213740
275.6 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
39341
1.45 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
67022
2.47 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
31132
1.15 KIPS |
|
|
Text Classification (SP)
|
100% |
3319
4.43 KIPS |
|
|
Text Classification (HP)
|
100% |
4252
5.68 KIPS |
|
|
Text Classification (Q)
|
97% |
2039
2.73 KIPS |
|
|
Machine Translation (SP)
|
100% |
4658
80.2 IPS |
|
|
Machine Translation (HP)
|
100% |
4696
80.9 IPS |
|
|
Machine Translation (Q)
|
60% |
2136
47.6 IPS |