| User | Razzer85 |
| Upload Date | August 18 2024 07:23 AM |
| Views | 15 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 4090 |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | Micro-Star International Co., Ltd. MS-7D89 |
| Motherboard | Micro-Star International Co., Ltd. MPG Z790 CARBON WIFI (MS-7D89) |
| Power Plan | Ausbalanciert |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) i9-14900KS |
| Topology | 1 Processor, 24 Cores, 32 Threads |
| Identifier | GenuineIntel Family 6 Model 183 Stepping 1 |
| Base Frequency | 3.20 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 96.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
13199
2.45 KIPS |
|
|
Image Classification (HP)
|
99% |
17142
3.20 KIPS |
|
|
Image Classification (Q)
|
100% |
11084
2.06 KIPS |
|
|
Image Segmentation (SP)
|
100% |
20169
327.0 IPS |
|
|
Image Segmentation (HP)
|
100% |
24022
389.4 IPS |
|
|
Image Segmentation (Q)
|
98% |
18545
301.5 IPS |
|
|
Pose Estimation (SP)
|
100% |
308317
359.8 IPS |
|
|
Pose Estimation (HP)
|
100% |
517112
603.4 IPS |
|
|
Pose Estimation (Q)
|
97% |
268138
314.0 IPS |
|
|
Object Detection (SP)
|
100% |
17834
1.41 KIPS |
|
|
Object Detection (HP)
|
100% |
22567
1.79 KIPS |
|
|
Object Detection (Q)
|
89% |
15219
1.22 KIPS |
|
|
Face Detection (SP)
|
100% |
45246
537.6 IPS |
|
|
Face Detection (HP)
|
100% |
53812
639.4 IPS |
|
|
Face Detection (Q)
|
97% |
38082
454.1 IPS |
|
|
Depth Estimation (SP)
|
100% |
89148
686.8 IPS |
|
|
Depth Estimation (HP)
|
99% |
154836
1.19 KIPS |
|
|
Depth Estimation (Q)
|
75% |
65635
529.8 IPS |
|
|
Style Transfer (SP)
|
100% |
551697
709.2 IPS |
|
|
Style Transfer (HP)
|
100% |
1049088
1.35 KIPS |
|
|
Style Transfer (Q)
|
98% |
475070
612.6 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
58261
2.15 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
76444
2.82 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
43036
1.59 KIPS |
|
|
Text Classification (SP)
|
100% |
3741
4.99 KIPS |
|
|
Text Classification (HP)
|
99% |
4625
6.17 KIPS |
|
|
Text Classification (Q)
|
97% |
2229
2.98 KIPS |
|
|
Machine Translation (SP)
|
100% |
4691
80.8 IPS |
|
|
Machine Translation (HP)
|
100% |
4607
79.3 IPS |
|
|
Machine Translation (Q)
|
60% |
2025
45.2 IPS |