| User | DavidAR |
| Upload Date | March 18 2025 08:33 PM |
| Views | 7 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | NPU |
| Device | Intel(R) AI Boost |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | Micro-Star International Co., Ltd. MS-7E22 |
| Motherboard | Micro-Star International Co., Ltd. MEG Z890 ACE (MS-7E22) |
| Power Plan | High performance |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 285K |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 3.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 64.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
6512
1.21 KIPS |
|
|
Image Classification (HP)
|
99% |
8923
1.66 KIPS |
|
|
Image Classification (Q)
|
100% |
12506
2.33 KIPS |
|
|
Image Segmentation (SP)
|
100% |
8888
144.1 IPS |
|
|
Image Segmentation (HP)
|
98% |
3812
62.0 IPS |
|
|
Image Segmentation (Q)
|
99% |
5142
83.6 IPS |
|
|
Pose Estimation (SP)
|
100% |
15214
17.8 IPS |
|
|
Pose Estimation (HP)
|
100% |
44548
52.0 IPS |
|
|
Pose Estimation (Q)
|
97% |
97462
114.1 IPS |
|
|
Object Detection (SP)
|
100% |
6374
505.6 IPS |
|
|
Object Detection (HP)
|
92% |
7742
617.9 IPS |
|
|
Object Detection (Q)
|
87% |
12868
1.03 KIPS |
|
|
Face Detection (SP)
|
100% |
17489
207.8 IPS |
|
|
Face Detection (HP)
|
72% |
19452
247.3 IPS |
|
|
Face Detection (Q)
|
100% |
35881
426.3 IPS |
|
|
Depth Estimation (SP)
|
100% |
15629
120.4 IPS |
|
|
Depth Estimation (HP)
|
24% |
976
172.3 IPS |
|
|
Depth Estimation (Q)
|
89% |
41399
322.0 IPS |
|
|
Style Transfer (SP)
|
100% |
43381
55.8 IPS |
|
|
Style Transfer (HP)
|
100% |
63856
82.1 IPS |
|
|
Style Transfer (Q)
|
98% |
118663
153.0 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
9041
333.8 IPS |
|
|
Image Super-Resolution (HP)
|
98% |
18228
675.1 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
33459
1.24 KIPS |
|
|
Text Classification (SP)
|
100% |
4444
5.93 KIPS |
|
|
Text Classification (HP)
|
100% |
2765
3.69 KIPS |
|
|
Text Classification (Q)
|
92% |
2780
3.73 KIPS |
|
|
Machine Translation (SP)
|
100% |
4177
71.9 IPS |
|
|
Machine Translation (HP)
|
100% |
5564
95.8 IPS |
|
|
Machine Translation (Q)
|
100% |
5632
97.0 IPS |