| User | m4n |
| Upload Date | February 01 2025 04:01 PM |
| Views | 13 |
| AI Information | |
|---|---|
| Framework | TensorFlow Lite |
| Backend | QNN |
| Device | ARM ARMv8 |
| System Information | |
|---|---|
| Operating System | Android 15 |
| Model | HONOR BVL-N49 |
| Model ID | HONOR BVL-N49 |
| Motherboard | BVL |
| Governor | walt |
| CPU Information | |
|---|---|
| Name | ARM ARMv8 |
| Topology | 1 Processor, 8 Cores |
| Identifier | ARM implementer 65 architecture 8 variant 0 part 3458 revision 1 |
| Base Frequency | 2.26 GHz |
| Cluster 1 | 2 Cores @ 2.27 GHz |
| Cluster 2 | 2 Cores @ 2.96 GHz |
| Cluster 3 | 3 Cores @ 3.15 GHz |
| Cluster 4 | 1 Core @ 3.30 GHz |
| Memory Information | |
|---|---|
| Size | 11.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
266
49.5 IPS |
|
|
Image Classification (HP)
|
100% |
16791
3.12 KIPS |
|
|
Image Classification (Q)
|
97% |
42699
7.97 KIPS |
|
|
Image Segmentation (SP)
|
100% |
342
5.54 IPS |
|
|
Image Segmentation (HP)
|
100% |
10844
175.8 IPS |
|
|
Image Segmentation (Q)
|
98% |
31554
513.1 IPS |
|
|
Pose Estimation (SP)
|
100% |
459
0.54 IPS |
|
|
Pose Estimation (HP)
|
100% |
77187
90.1 IPS |
|
|
Pose Estimation (Q)
|
98% |
398623
466.6 IPS |
|
|
Object Detection (SP)
|
100% |
276
21.9 IPS |
|
|
Object Detection (HP)
|
100% |
14813
1.17 KIPS |
|
|
Object Detection (Q)
|
86% |
20386
1.64 KIPS |
|
|
Face Detection (SP)
|
100% |
682
8.10 IPS |
|
|
Face Detection (HP)
|
100% |
33215
394.7 IPS |
|
|
Face Detection (Q)
|
97% |
127392
1.52 KIPS |
|
|
Depth Estimation (SP)
|
100% |
573
4.42 IPS |
|
|
Depth Estimation (HP)
|
99% |
59105
455.4 IPS |
|
|
Depth Estimation (Q)
|
63% |
117571
1.10 KIPS |
|
|
Style Transfer (SP)
|
100% |
934
1.20 IPS |
|
|
Style Transfer (HP)
|
98% |
82628
106.5 IPS |
|
|
Style Transfer (Q)
|
98% |
421673
543.8 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
314
11.6 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
40886
1.51 KIPS |
|
|
Image Super-Resolution (Q)
|
97% |
103595
3.84 KIPS |
|
|
Text Classification (SP)
|
100% |
439
585.4 IPS |
|
|
Text Classification (HP)
|
100% |
3226
4.31 KIPS |
|
|
Text Classification (Q)
|
93% |
6953
9.33 KIPS |
|
|
Machine Translation (SP)
|
100% |
664
11.4 IPS |
|
|
Machine Translation (HP)
|
100% |
3801
65.5 IPS |
|
|
Machine Translation (Q)
|
55% |
2594
68.0 IPS |