| User | imholyagnostic |
| Upload Date | January 05 2025 05:12 PM |
| Views | 14 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | DirectML |
| Device | NVIDIA GeForce RTX 4070 Laptop GPU |
| System Information | |
|---|---|
| Operating System | Windows 11 Pro (64-bit) |
| Model | LENOVO 83DF |
| Motherboard | LENOVO LNVNB161216 |
| CPU Information | |
|---|---|
| Name | Intel Core i9-14900HX |
| Topology | 1 Processor, 24 Cores, 32 Threads |
| Identifier | GenuineIntel Family 6 Model 183 Stepping 1 |
| Base Frequency | 2.20 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
7868
1.46 KIPS |
|
|
Image Classification (HP)
|
99% |
13045
2.43 KIPS |
|
|
Image Classification (Q)
|
100% |
7143
1.33 KIPS |
|
|
Image Segmentation (SP)
|
100% |
12333
199.9 IPS |
|
|
Image Segmentation (HP)
|
100% |
15296
248.0 IPS |
|
|
Image Segmentation (Q)
|
98% |
11227
182.6 IPS |
|
|
Pose Estimation (SP)
|
100% |
121913
142.3 IPS |
|
|
Pose Estimation (HP)
|
100% |
297044
346.6 IPS |
|
|
Pose Estimation (Q)
|
96% |
105430
123.5 IPS |
|
|
Object Detection (SP)
|
100% |
9347
741.4 IPS |
|
|
Object Detection (HP)
|
100% |
15591
1.24 KIPS |
|
|
Object Detection (Q)
|
85% |
8218
661.6 IPS |
|
|
Face Detection (SP)
|
100% |
23060
274.0 IPS |
|
|
Face Detection (HP)
|
100% |
34380
408.5 IPS |
|
|
Face Detection (Q)
|
97% |
20607
245.7 IPS |
|
|
Depth Estimation (SP)
|
100% |
44875
345.7 IPS |
|
|
Depth Estimation (HP)
|
99% |
84635
652.1 IPS |
|
|
Depth Estimation (Q)
|
77% |
36472
291.5 IPS |
|
|
Style Transfer (SP)
|
100% |
185150
238.0 IPS |
|
|
Style Transfer (HP)
|
100% |
448983
577.2 IPS |
|
|
Style Transfer (Q)
|
98% |
169617
218.7 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
35383
1.31 KIPS |
|
|
Image Super-Resolution (HP)
|
100% |
49836
1.84 KIPS |
|
|
Image Super-Resolution (Q)
|
99% |
24945
923.7 IPS |
|
|
Text Classification (SP)
|
100% |
3052
4.07 KIPS |
|
|
Text Classification (HP)
|
99% |
3793
5.06 KIPS |
|
|
Text Classification (Q)
|
97% |
1573
2.11 KIPS |
|
|
Machine Translation (SP)
|
100% |
3281
56.5 IPS |
|
|
Machine Translation (HP)
|
98% |
3430
59.3 IPS |
|
|
Machine Translation (Q)
|
70% |
1686
31.6 IPS |