| User | O-EtaIXVII |
| Upload Date | December 22 2024 07:01 AM |
| Views | 17 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | CPU |
| Device | Intel(R) Core(TM) Ultra 9 285K |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 (64-bit) |
| Model | ASUS System Product Name |
| Motherboard | ASUSTeK COMPUTER INC. ROG MAXIMUS Z890 APEX |
| Power Plan | High performance |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 285K |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 3.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 48.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
6392
1.19 KIPS |
|
|
Image Classification (HP)
|
100% |
3607
670.7 IPS |
|
|
Image Classification (Q)
|
100% |
10850
2.02 KIPS |
|
|
Image Segmentation (SP)
|
100% |
8650
140.2 IPS |
|
|
Image Segmentation (HP)
|
100% |
5073
82.2 IPS |
|
|
Image Segmentation (Q)
|
99% |
10741
174.1 IPS |
|
|
Pose Estimation (SP)
|
100% |
17563
20.5 IPS |
|
|
Pose Estimation (HP)
|
100% |
16248
19.0 IPS |
|
|
Pose Estimation (Q)
|
96% |
34990
41.0 IPS |
|
|
Object Detection (SP)
|
100% |
6451
511.7 IPS |
|
|
Object Detection (HP)
|
100% |
4263
338.1 IPS |
|
|
Object Detection (Q)
|
88% |
11678
936.2 IPS |
|
|
Face Detection (SP)
|
100% |
18809
223.5 IPS |
|
|
Face Detection (HP)
|
100% |
10985
130.5 IPS |
|
|
Face Detection (Q)
|
100% |
32357
384.5 IPS |
|
|
Depth Estimation (SP)
|
100% |
17755
136.8 IPS |
|
|
Depth Estimation (HP)
|
99% |
15126
116.5 IPS |
|
|
Depth Estimation (Q)
|
89% |
33070
257.1 IPS |
|
|
Style Transfer (SP)
|
100% |
50198
64.5 IPS |
|
|
Style Transfer (HP)
|
100% |
47532
61.1 IPS |
|
|
Style Transfer (Q)
|
98% |
96238
124.1 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
10082
372.3 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
10190
376.3 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
18685
692.0 IPS |
|
|
Text Classification (SP)
|
100% |
4274
5.70 KIPS |
|
|
Text Classification (HP)
|
100% |
3342
4.46 KIPS |
|
|
Text Classification (Q)
|
92% |
5878
7.90 KIPS |
|
|
Machine Translation (SP)
|
100% |
4019
69.2 IPS |
|
|
Machine Translation (HP)
|
100% |
6575
113.3 IPS |
|
|
Machine Translation (Q)
|
100% |
4027
69.4 IPS |