| User | gbench |
| Upload Date | December 07 2024 01:41 PM |
| Views | 12 |
| AI Information | |
|---|---|
| Framework | ONNX |
| Backend | CPU |
| Device | Intel(R) Core(TM) Ultra 9 285K |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 Pro (64-bit) |
| Model | Micro-Star International Co., Ltd. MS-7E33 |
| Motherboard | Micro-Star International Co., Ltd. MPG Z890I EDGE TI WIFI (MS-7E33) |
| Power Plan | Ausbalanciert |
| CPU Information | |
|---|---|
| Name | Intel(R) Core(TM) Ultra 9 285K |
| Topology | 1 Processor, 24 Cores |
| Identifier | GenuineIntel Family 6 Model 198 Stepping 2 |
| Base Frequency | 3.70 GHz |
| Cluster 1 | 8 Cores |
| Cluster 2 | 16 Cores |
| Memory Information | |
|---|---|
| Size | 96.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
5080
944.7 IPS |
|
|
Image Classification (HP)
|
100% |
777
144.4 IPS |
|
|
Image Classification (Q)
|
99% |
8472
1.58 KIPS |
|
|
Image Segmentation (SP)
|
100% |
2814
45.6 IPS |
|
|
Image Segmentation (HP)
|
100% |
1499
24.3 IPS |
|
|
Image Segmentation (Q)
|
98% |
4777
77.7 IPS |
|
|
Pose Estimation (SP)
|
100% |
13290
15.5 IPS |
|
|
Pose Estimation (HP)
|
100% |
7435
8.68 IPS |
|
|
Pose Estimation (Q)
|
94% |
43050
50.5 IPS |
|
|
Object Detection (SP)
|
100% |
4727
374.9 IPS |
|
|
Object Detection (HP)
|
100% |
1066
84.5 IPS |
|
|
Object Detection (Q)
|
86% |
10903
876.2 IPS |
|
|
Face Detection (SP)
|
100% |
12844
152.6 IPS |
|
|
Face Detection (HP)
|
100% |
2597
30.9 IPS |
|
|
Face Detection (Q)
|
97% |
12853
153.2 IPS |
|
|
Depth Estimation (SP)
|
100% |
14851
114.4 IPS |
|
|
Depth Estimation (HP)
|
99% |
3336
25.7 IPS |
|
|
Depth Estimation (Q)
|
78% |
22506
179.6 IPS |
|
|
Style Transfer (SP)
|
100% |
28957
37.2 IPS |
|
|
Style Transfer (HP)
|
100% |
18832
24.2 IPS |
|
|
Style Transfer (Q)
|
98% |
31703
40.9 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
4872
179.9 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
3088
114.0 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
6368
235.8 IPS |
|
|
Text Classification (SP)
|
100% |
1859
2.48 KIPS |
|
|
Text Classification (HP)
|
100% |
1005
1.34 KIPS |
|
|
Text Classification (Q)
|
97% |
1652
2.21 KIPS |
|
|
Machine Translation (SP)
|
100% |
2868
49.4 IPS |
|
|
Machine Translation (HP)
|
100% |
1157
19.9 IPS |
|
|
Machine Translation (Q)
|
65% |
4234
85.1 IPS |