Upload Date | October 10 2024 09:00 PM |
Views | 2 |
System Information | |
---|---|
Operating System | Microsoft Windows 11 Pro (64-bit) |
Model | SAMSUNG ELECTRONICS CO., LTD. 960QHA |
Motherboard | SAMSUNG ELECTRONICS CO., LTD. NP960QHA-MSO |
Power Plan | SAMSUNG MODE |
CPU Information | |
---|---|
Name | Intel(R) Core(TM) Ultra 7 258V |
Topology | 1 Processor, 8 Cores |
Identifier | GenuineIntel Family 6 Model 189 Stepping 1 |
Base Frequency | 2.20 GHz |
Cluster 1 | 4 Cores |
Cluster 2 | 4 Cores |
L1 Instruction Cache | 64.0 KB x 4 |
L1 Data Cache | 48.0 KB x 4 |
L2 Cache | 2.50 MB x 1 |
L3 Cache | 12.0 MB x 1 |
Memory Information | |
---|---|
Size | 32.00 GB |
Inference Information | |
---|---|
Framework | ONNX |
Backend | CPU |
Device | Default |
Workload | Accuracy | Score | |
---|---|---|---|
Image Classification (F32)
|
100% |
1811
338.9 IPS |
|
Image Classification (F16)
|
100% |
1800
336.7 IPS |
|
Image Classification (I8)
|
99% |
3311
619.5 IPS |
|
Image Segmentation (F32)
|
100% |
1606
26.8 IPS |
|
Image Segmentation (F16)
|
100% |
1602
26.8 IPS |
|
Image Segmentation (I8)
|
98% |
2653
44.3 IPS |
|
Pose Estimation (F32)
|
100% |
5191
6.29 IPS |
|
Pose Estimation (F16)
|
100% |
4764
5.77 IPS |
|
Pose Estimation (I8)
|
100% |
18100
21.9 IPS |
|
Object Detection (F32)
|
100% |
1818
135.7 IPS |
|
Object Detection (F16)
|
100% |
1819
135.8 IPS |
|
Object Detection (I8)
|
62% |
1739
129.8 IPS |
|
Face Detection (F32)
|
100% |
4030
47.9 IPS |
|
Face Detection (F16)
|
100% |
4099
48.7 IPS |
|
Face Detection (I8)
|
89% |
4463
53.1 IPS |
|
Depth Estimation (F32)
|
100% |
6326
49.1 IPS |
|
Depth Estimation (F16)
|
100% |
6334
49.1 IPS |
|
Depth Estimation (I8)
|
96% |
12767
99.0 IPS |
|
Style Transfer (F32)
|
100% |
12733
16.7 IPS |
|
Style Transfer (F16)
|
100% |
12727
16.7 IPS |
|
Style Transfer (I8)
|
98% |
21568
28.4 IPS |
|
Image Super-Resolution (F32)
|
100% |
2696
96.3 IPS |
|
Image Super-Resolution (F16)
|
100% |
2756
98.4 IPS |
|
Image Super-Resolution (I8)
|
99% |
4770
170.4 IPS |
|
Text Classification (F32)
|
100% |
1341
1.93 KIPS |
|
Text Classification (F16)
|
100% |
1331
1.91 KIPS |
|
Text Classification (I8)
|
98% |
1163
1.67 KIPS |
|
Machine Translation (F32)
|
100% |
2000
36.8 IPS |
|
Machine Translation (F16)
|
100% |
2044
37.6 IPS |
|
Machine Translation (I8)
|
67% |
2716
50.0 IPS |