| Upload Date | December 05 2025 02:24 AM |
| Views | 2 |
| AI Information | |
|---|---|
| Framework | OpenVINO |
| Backend | NPU |
| Device | Intel(R) AI Boost |
| System Information | |
|---|---|
| Operating System | Microsoft Windows 11 IoT Enterprise LTSC (64-bit) |
| Model | ONYX Healthcare Inc. Venus-4Series-T |
| Motherboard | ONYX Healthcare Inc Venus-4Series-T |
| Power Plan | Balanced |
| CPU Information | |
|---|---|
| Name | Intel Core Ultra 5 125U |
| Topology | 1 Processor, 12 Cores, 14 Threads |
| Identifier | GenuineIntel Family 6 Model 170 Stepping 4 |
| Base Frequency | 3.60 GHz |
| Cluster 1 | 2 Cores |
| Cluster 2 | 10 Cores |
| Memory Information | |
|---|---|
| Size | 32.00 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
545
101.3 IPS |
|
|
Image Classification (HP)
|
100% |
5579
1.04 KIPS |
|
|
Image Classification (Q)
|
100% |
8138
1.51 KIPS |
|
|
Image Segmentation (SP)
|
100% |
820
13.3 IPS |
|
|
Image Segmentation (HP)
|
100% |
2358
38.2 IPS |
|
|
Image Segmentation (Q)
|
99% |
2871
46.5 IPS |
|
|
Pose Estimation (SP)
|
100% |
1395
1.63 IPS |
|
|
Pose Estimation (HP)
|
100% |
27940
32.6 IPS |
|
|
Pose Estimation (Q)
|
96% |
60077
70.4 IPS |
|
|
Object Detection (SP)
|
100% |
587
46.6 IPS |
|
|
Object Detection (HP)
|
100% |
4544
360.5 IPS |
|
|
Object Detection (Q)
|
88% |
8068
646.8 IPS |
|
|
Face Detection (SP)
|
100% |
1776
21.1 IPS |
|
|
Face Detection (HP)
|
100% |
12232
145.3 IPS |
|
|
Face Detection (Q)
|
100% |
22241
264.3 IPS |
|
|
Depth Estimation (SP)
|
100% |
1666
12.8 IPS |
|
|
Depth Estimation (HP)
|
99% |
11093
85.5 IPS |
|
|
Depth Estimation (Q)
|
88% |
21796
169.6 IPS |
|
|
Style Transfer (SP)
|
100% |
3974
5.11 IPS |
|
|
Style Transfer (HP)
|
100% |
35623
45.8 IPS |
|
|
Style Transfer (Q)
|
98% |
67141
86.6 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
768
28.4 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
13903
513.4 IPS |
|
|
Image Super-Resolution (Q)
|
99% |
26172
969.3 IPS |
|
|
Text Classification (SP)
|
100% |
617
823.7 IPS |
|
|
Text Classification (HP)
|
100% |
1671
2.23 KIPS |
|
|
Text Classification (Q)
|
92% |
1701
2.28 KIPS |
|
|
Machine Translation (SP)
|
100% |
801
13.8 IPS |
|
|
Machine Translation (HP)
|
100% |
2966
51.1 IPS |
|
|
Machine Translation (Q)
|
100% |
3344
57.6 IPS |