| Upload Date | November 25 2025 04:09 AM |
| Views | 5 |
| AI Information | |
|---|---|
| Framework | TensorFlow Lite |
| Backend | GPU |
| Device | Samsung Exynos 2400 |
| System Information | |
|---|---|
| Operating System | Android 16 |
| Model | Samsung Galaxy S24+ |
| Model ID | samsung SM-S926N |
| Motherboard | s5e9945 |
| Governor | energy_aware |
| CPU Information | |
|---|---|
| Name | ARM ARMv8 |
| Topology | 1 Processor, 10 Cores |
| Identifier | ARM implementer 65 architecture 8 variant 0 part 3458 revision 1 |
| Base Frequency | 1.96 GHz |
| Cluster 1 | 4 Cores @ 1.96 GHz |
| Cluster 2 | 3 Cores @ 2.59 GHz |
| Cluster 3 | 2 Cores @ 2.90 GHz |
| Cluster 4 | 1 Core @ 3.21 GHz |
| Memory Information | |
|---|---|
| Size | 10.94 GB |
| Workload | Accuracy | Score | |
|---|---|---|---|
|
Image Classification (SP)
|
100% |
730
135.7 IPS |
|
|
Image Classification (HP)
|
100% |
1383
257.2 IPS |
|
|
Image Classification (Q)
|
100% |
1165
216.6 IPS |
|
|
Image Segmentation (SP)
|
100% |
1573
25.5 IPS |
|
|
Image Segmentation (HP)
|
100% |
2484
40.3 IPS |
|
|
Image Segmentation (Q)
|
98% |
2250
36.6 IPS |
|
|
Pose Estimation (SP)
|
100% |
6184
7.22 IPS |
|
|
Pose Estimation (HP)
|
99% |
13048
15.2 IPS |
|
|
Pose Estimation (Q)
|
95% |
12196
14.3 IPS |
|
|
Object Detection (SP)
|
100% |
568
45.0 IPS |
|
|
Object Detection (HP)
|
99% |
1026
81.4 IPS |
|
|
Object Detection (Q)
|
84% |
957
77.2 IPS |
|
|
Face Detection (SP)
|
100% |
2576
30.6 IPS |
|
|
Face Detection (HP)
|
100% |
4742
56.3 IPS |
|
|
Face Detection (Q)
|
97% |
3704
44.2 IPS |
|
|
Depth Estimation (SP)
|
100% |
3544
27.3 IPS |
|
|
Depth Estimation (HP)
|
98% |
6344
49.0 IPS |
|
|
Depth Estimation (Q)
|
62% |
4748
45.8 IPS |
|
|
Style Transfer (SP)
|
100% |
12617
16.2 IPS |
|
|
Style Transfer (HP)
|
100% |
22729
29.2 IPS |
|
|
Style Transfer (Q)
|
98% |
23386
30.2 IPS |
|
|
Image Super-Resolution (SP)
|
100% |
1619
59.8 IPS |
|
|
Image Super-Resolution (HP)
|
100% |
3234
119.4 IPS |
|
|
Image Super-Resolution (Q)
|
97% |
3205
118.8 IPS |
|
|
Text Classification (SP)
|
29% |
23
394.1 IPS |
|
|
Text Classification (HP)
|
35% |
64
585.8 IPS |
|
|
Text Classification (Q)
|
30% |
35
554.3 IPS |
|
|
Machine Translation (SP)
|
100% |
709
12.2 IPS |
|
|
Machine Translation (HP)
|
100% |
999
17.2 IPS |
|
|
Machine Translation (Q)
|
42% |
194
12.6 IPS |